o N

AR AR R R R R R R R R RR R

LIMBIC SYSTEMS UK LTD

64 PASCAL
USERS MANUAL

By David Goodman

Copyright © 1984 All rights reserved
LIMBIC SYSTEMS UK LTD

FEBRUARY 1984

gooaoooonoRRnERRRRRRRRDY

CEOPTCGHT

The materials on this diskette and in the manual are copyrighted by LIMBIC SYSTEMS
UK LTD. Copying for resale or exchange is illegal and is strictly forbidden.

WARNING

Although programs are tested by L.S.UK before release, no claim is made

concerning the accuracy of this software. L.S.UK and its distributors cannot assume

liability or responsibility for any loss or damage arising from the use of these programs,

and programs are sold only on the basis of this understanding. Individual applications

should be thoroughly tested before implementation, as programs are standardized in

order to offer low cost software, and therefore may not necessarily fulfil a particular

requirement. You are advised to consult your business software dealer for installation,
maintenance, and training costs, should you require these services. Any changes to

the software not recommended by L.S.UK may lead to the withdrawal of support
services.

DISKETTECARE

Mini-diskettes appearto be reasonably tough, but are in fact very delicate and require
careful handling. They must at all times be either in a disk drive or in their protective
envelope. Diskettes left lying about stand a very good chance of never functioning
again.

The magnetic surface should never be touched — note that contrary to popular belief,
programs and data are recorded on the UNDERSIDE of the diskette.

The environment of the diskettes should not have a temperature below 10°C (50°F), or
above 52°C (125°F).

The diskette should never be bent or flexed.
Insertion of a diskette into a drive should always be done in a gentle, cautious manner.

Diskettes should always be kept away from all magnetic fields (e.g. Electric motors,
high current cables, etc. . . .).

CONITENIS

1. INTRODUCTION TO OXFORD PASCAL

2. BEGINNER'S GUIDE TO PASCAL

2.1

2.4.1

246

2.5.1
252
235 8
254
26
2.7
2.8

29

Getting Started

WRITE statements, strings
Integer arithmetic. +, —, *, DIV, MOD
Functions: ABS, SQR, ODD

Boolean expressions >, <, >=, <=, <>, =, AND, OR, NOT

Pascal Statements

Variables and assignment statements
FOR statement

IF statement

REPEAT and READ statements

CASE statement

Error messages and error correction
WHILE statement

More Variable Types

Real numbers

Real arithmetic.

SQRT, SIN, ARCTAN, LN, EXP, ROUND, TRUNC.
Output formatting and constants

Characters

64 graphics

Arrays

Enumerated types and subranges ORD, PRED, SUCC
Sets

Procedures And Functions

Procedures
VAR parameters
Functions
Recursion
Textfiles

Strings

Advanced Features

Records
Pointers and lists
GOTO statement

Extensions

Disk-based Operation
Editor Command Summary
Ermror Messages

Sample Programs

gooaooaooRRnOOOnnRRnDDD]

3. OXFORD PASCAL REFERENCE MANUAL

€l

S e
O W R

SEEG
32

SN
S22
328
3124
SIS
826
327
828

3.3
Sl

General

Pascal Keywords
Pascal Identifiers
Other Special Symbols
Comments
Constants

integer

real

character and string
Blanks

Data Types and Operators

Integer

Real

Char

User-defined (enumerated) Types

Subrange Types

Boolean

Operator Precedence

Summary of Arithmetic and Conversion Functions

Pascal Declarations and Statements

Pascal Programs

3.3.1.1 Constant Declarations

332
3888
334
338
3o
g
8.8
333

33,10

S aulil

Skl

3.4

3.4.1
342
343
344
845
346
3.5

3.5,
261
$95
3.54
358

Type Declarations
Variable Declarations
Executable Statements
Assignment Statements
Compound Statements
“If" Statements
“Repeat” Statements
“While"” Statements
'For’ Statements
“"Case” Statements
Goto” Statements label declarations

Input and Output of Text

Qutputting to Textfiles

Inputting from Textfiles

Reading Other Data Types from Textfiles
Writing Other Data Types to Textfiles
Abbreviations

Manipulating Files

Structured Data Types

Arrays

Sets

Records

Packed Structures
Pack and Unpack

36

Sl
8617
SHELS
3.6.4
5169
37

S/
S

3.8

Sl
3482
8/8.8
3.84
5185

SH86
3.9

9L
892
5199
3.94
5195
S6
SLELT
3518
5199
SO
S |
SO0

3.10

3@
31@2

Functions and Procedures

Function and Procedure Definitions
Procedure and Function Calls
Parameters

Local Declarations

Recursion and Forward References

Dynamic Storage and Pointers

Pointers
"New” and “"Dispose”

Disk Files

Declarations

Sequential Writing

Sequential Reading

Extemnal Files

Reading and Writing from other Devices
Disk textfile example

CLOSE command

Extensions to Standard Pascal

Hexadecimal Constants
Memory VDU and Port Access

Added commands for Oxford Pascal V1.0

Hexadecimal Input and Output
Bit Manipulation

Catching I/O Emrors

Keyboard Interrupts

Random Number Generator
Underscore

The 64 Internal Clock

Input of String Variables
Program Chaining

64 Pascal Interface Guide

Assembly Language Format
Storage Formats

goooaoaonOEnOoOnRRRnIng

ERRATA

Section Page

1
2
20
23

2

1
5
1

(= = I B B B WN O

[N} (G0 [[— 1= w

FFF HEX should read FFFF HEX

OXFORD Pascal CX. should read OXFORD Pascal VX.X

the line :integer; should read x:integer;

writeln (x+y:7:2,x-v:7:2,x*y:7:2 x/y:7:2); should read

writeln (x+y:7:2,x-v:7:2,x*y:7:2,%/y:7:2);

read i some numbers should be read in some numbers

The final line in the program Eratosthenes should be end.

The last line of the first example procedure should be end.

, for example input becomes , for example inputf

begin while (input="") and not eoln do becomes begin while
(input+="") and not eoln do

repeated if eoln then readln; becomes repeat if eoln then readln;
until input=""; becomes until inputf="";

read () is equivalent to x:=input;get(input) becomes read(x) is
equivalent to x:=input4;get(input)

write(x) is equivalent to output:=x;put{output) becomes write(x) is
equivalent to outputt=x; put(ocutput)

x:=input becomes x:=inputt

secs=0 then should read if secs=0 then

a line is missing after

—for 1:=1 to delay do (*nothing®); —

which should be

secs:=(secst 1)mod60;

the drive defaults to drive O becomes the drive defaults to the last
drive accessed

The BASIC commands available should include LOAD and PEEK
row:=col+j: should be col:=col+;j;

Integer is misspelt as Interger

if y the sl else s2 becomes if y then sl else s2

the line integer :reads one character into the variable, as above
should be omitted

linefeed = a; becomes linefeed = 'o;

onject code in “progl.obj” becomes object code in “progl.obj”

gooaooooOoanROnORDRnDDDD

1. INTRODUCTION TO OXFORD PASCAL

Pascal is a powerful high level computer language written by Niklaus Wirth of Zurich,
Switzerland.*

It can be efficiently implemented on small computers as well as large mainframes,
offering numerous advantages over other popular microcomputer languages such as
BASIC. Some of these advantages are:

ALGOL - like block structure
Meaningful variable names

Powertul data structuring techniques
User-defined data types and constants
Excellent function and subroutine linkage
Recursive calls

Clean, modermn flow control

Runtime error checking

Dynamic variable allocation

Greater standardisation

High speed of execution

Greater program legibility

OXFORD Pascal is an implementation of standard Pascal designed specially forthe
CBM 64. 1t offers all the features of this powerful language together with some useful
enhancements for the personal computer user.

OXFORD Pascal has two modes of operation. In the simplest mode the Pascal compiler
co-resides in RAM with the user’s program. This is ideal for learning the language or
writing small programs which do not need the disk. Most Pascal commands are
available in this mode exceptthose involving diskette files. Formore complex programs
the disk-based compiler can be used to give the full power of the language.

* PASCAL USER MANUAL AND REPORT BY JENSEN AND WIRTH
— Springer-Verlag 1975

Hardware requirements
CBM64 computer, plus amodel 1541 floppy disk unit or 4040 floppy disk unit with an
INIERE@Dircnm @@ Sis:

Some implementation information

MAXINT = 32767
type INTEGER =-32768...32767

type CHAR = the ASCIl set (extended to include 64 graphics)
set values: must be in 0..127(therefore set of char must be between chr(0)..chr(127))

real numbers: accuracy: to9 digits
range: approx 1E-38 to 1E38

(

default output formats: integer : 7 characters

real : 12 characters
boolean : 6 characters
char . 1 character
string - size of string

program size and complexity: no restriction, apart from exceeding the total memory
capacity of the system (STACK OVERFLOW is printed)

identifiers: first 8 characters must be unique

labels: first 8 digits must be unique

Extensions to standard Pascal

Dynamic specification of filenames
Input of strings

Hexadecimal numbers and hex [/O
Bit manipulation

Machine language interface
Memory and VDU screen access
Run-time I/O error detection
Random number generator
Program chaining

64 clock interface

Separate compilation (linking)

PASCAL RAM USAGE
This is automatically optimised to use all available memory
ETETE IHIEDL
Kemal ROM
or graphics bit-map
E@O@EIEX
/O drivers
or
colour graphics memo
D000 HEX b
CO00 HEX
Top of RAM
run time stack
dynamic variables
executable code
(p-code)
. edited text
800 HEX

“Stack overflow” is printed when all memory has been exhausted.

1

fooaanaaaRnOnnnD0DDDDY

2. BEGINNER'S GUIDE TO PASCAL

This section is a straightforward introduction to some of the features of Pascal.

2.1. GETTING STARTED — WRITE STATEMENTS

Tum your computer on. It should be displaying the message.

###% COMMODORE 64 BASIC V2 ####
64K RAM SYSTEMS 38911 BASIC BYTES FREE
READY

TorunPascal, turnthe disk uniton, insert the Pascal diskette into the disk drive (drive Ofor
dual disk drives), and then type:

ILOJAD) == (5]
followed by a carriage retum. The computer should reply with:

SEARCHING FOR #
LOADING
READY

This loads the first program on the diskette into memory, which should be the Pascal
system. Now you just type:

RUN

followed by a carmriage retum.

You should get a clear screen with the PASCAL SIGN-ON MESSAGE:
OXFORD Pascal cX.X

loading...
ready.

Modem computer can be very powerful, butthey need to be “told” whatto do by means
of PROGRAMS. Computers work in a language of numbers called MACHINE
LANGUAGE, but machine languages are generally quite difficult for humans tomaster,
and they differ widely depending on the particular computer you are using.

It's much easier to talk to the computer in a HIGH LEVEL LANGUAGE such as COBOL
or Pascal. These languages somewhat resemble English, but have stricter rules of
grammar to prevent ambiguities.

Pascal was invented by Niklaus Wirth, of Zurich, Switzerland in 1968. (Itis named after
the 17th century French mathematician Blaise Pascal). Pascal is an ideal language for
leamning to write computer programs. Your Pascal programs are automatically translated
by the computer into a machine language which it can interpret.

Let us start right away with a very simple programming example:

2.l

2.1.1 Example 1

First of all you must enter the program into the computer memory, and this is done using
the EDITOR.

Type in the first line of the program, shown below. Follow it with the carriage retum key
(referred to in this manual as <retum>):

10 begin
20 write (Hello World!")
30 end.

Having typed in the first line, the editor should automatically prompt you with the next
line number; which you should not re-type:

20

These line numbers have no significance in Pascal — they are purely for use by the
editor, and they will be assumed in all future examples. Remember, if you make a
mistake in typing the program you can correct it by using the screen editing commands
INST, DEL, cursor up, cursordown, cursor left and cursorright, just asin BASIC. Pressing
the DEL key, for example, will erase the last key you typed. See the CBM 64 User's
manual for a complete description.

Now enter the remaining two lines of the program, being especially careful about
punctuation and spelling, and don't forget that full stop at the end!

write (‘Hello World)
end.

When you have finished, type a blank line (just <return>) to turn off the line numbers.
All you have to do to run your program is to type

r<return>

If all goes well the computer should reply with something like the following:

Compiling

Program O 0909

0 errox(s)

Compilation complete.

Do not worry about the details, but what is happening is that the computer is scanning
your program and converting it into a numeric form which it can efficiently execute. (If
you don't get the message: “O emor(s)’, then you probably made a mistake in
typing. You could try typing “new <return>" and starting again!).

Now the computer should automatically run your program, and print the message:
Hello World

Once your program has been compiled, it can be run as many times as you like by
typing:

<return>

Each time the computer should print:

Hello World

2

googaooonmooOoonoDDDDDDDY

Now let us look at the program in more detail. The main body of a Pascal program is
always enclosed between the wordsBEGIN and END, the final END mustbe followed by
a full stop. Pascal programs consist of a sequence of “statements” which are executed
sequentially in the order they are written. Example 1 has one statement, a WRITE
statement which tells the computer to write something on the screen, in this case the
message “Hello Worldl". The object enclosed in the single quotes is called a STRING
and may contain any sequence of characters except <retum>. Also, if a single quote
is itself to be included in a string, it should be doubled up, so that

the Pascal program
begin

write ('O} Brien’s string)
end.

would cause the message
O'Brien'’s string

to be printed on the screen.

Example 2

Other things can be printed besides strings. Try the following program. We will use the
same steps as example 1 but we must remember to erase example 1 from the computer
memory. So type:

new <retum>
now type example 2 into the computer:

begin

write (3 + 4);
write (6—2-1)
end.

followed by

r<retum> (to compile and run the program)

When the program is run the computer should print
7 3

Example 2 contains two statements, which must be separated by a semicolon. It has
examples of INTEGER (whole number) arithmetic.

Now try the next example:

2.1.2 Example 3 multiplication and division

begin
write (6%7, 18 div 4, 18 mod 4, (4+2)*3)
end.

The computer should print
42 4 % -18

InPascal“*’ means multiplication, DIV means integer division (ie withrounding towards
zero), and "18 MOD 4" gives the remainder when 18 is divided by 4.

2.

Note how brackets have been used to change the orderof evaluating—4 + 6, or2. This is
because the computer does multiplications and divisions before it does additions and
subtractions.

Any number of items can be printed using asingle WRITE statement, provided that they
are separated by commas.

2.1.3 Example 4 functions

begin
write (sqr (4 + 5), abs (—44), abs (44), odd (3))

end.

The computer should print

81 44 44 TRUE

SQR, ABS and ODD are called“functions”. There are many differentfunctions in Pascal.
SQR, followed by a number in brackets, gives the square of the number.

ABS gives the absolute value of the number.

ODD (3) is TRUE because 3 is odd.

The last function, ODD, gives aBoolean, orlogical result, thatis it can either be TRUE or
FALSE. Boolean values are used a lot in Pascal so let us look at them more closely.

2.1.4 Example 5 Boolean expressions

begin

write (true, false, 3= 3, 3=4);
write (3<>4, 5<6, 9 >=10);
end.

Should print:

NRIUIE, EINLSIE. THRIUIE, JEANLSIE,
RIVIE TORIUIE JE/AILSTE

because: 3 is equal to itself
3 is not equal to 4
ete.

= means "equal to”

< means "less than”

> means "greater than”

>= means "greater than or equal to”
<= means “less than or equal to”
<> means "not equal to”

WRITELN is like WRITE but also generates a new line after printing all the values in
brackets.

2l

LE'IHIMEHHHHH]IIIIIIHH]H!BIHHHH)

Example 6 Boolean expressions

These can get a bit complicated, but the computer evaluates them using the rules of
logic.

begin

write (3= 3) and (3<5),(3=4) or (3>11));
write (not true, not false, not (1 = 2));

end.

Gives the result:
IRUEREARSERRAFSENTRENIRUE

because both (3= 3) and (3<5) are true, neither(3= 4) nor(3>11) are true, and (1 = 2)
is false so not (1 = 2) is true.

“x and y" is TRUE if both x and y are TRUE
“x ory" is TRUE if either x or y (or both) are TRUE
“not x" is TRUE if x is FALSE, and FALSE if x is TRUE

2.1

22 PESCAL STATEMENTS

First a word about symbols. These are the building blocks of Pascal programs, and there

are three main kinds:

1. Pascal keywords, such as BEGIN and END, which are reserved and can't be
altered by the user. A complete list of these is given in the reference manudl,
section 3.1.1.

Special symbols such as . ; ;== .. <> etc.

Identifiers, which are names chosen by the user. They can be any sequence of
letters or digits, but must start with a letter. For example:

i
Henrythe8th
PI

Warming

Identifiers are unique only if they differ in the first 8 characters, so that Henrythe7th and
Henrythe8th are the same identifier in OXFORD Pascal (and many other
implementations).

Upper case letters are equivalent to their lower case counterparts so that PI, pi and Pi
are all synonymous.

Some standard identifiers such as WRITE and WRITELN are predeclared in every
version of Pascal.

These can be redefined by the user, however (in contrast to Pascal keywords).

Important

Pascal symbols can't contain imbedded blanks. “Henry the 8th” is not the same as
“Henrythe8th”, and “30 000" is not equivalent to the number 30000. (“30,000” would

"

also be illegal). Note especially that”: =" cannot be used instead of “:=".

This aside, spaces, tabs and new lines may occur anywhere in a Pascal program, and
are ignored.

Now we retum fo some actual examples of Pascal programs. Indentation is used by
putting spaces in front of certain lines. This is optional but helps to make the program
clearer to humans.

2.2.1 Example 7 Variables and assignment

var x,y :integer;
begin

=0 =20
writeln (x,y);
x:=4;

y:=%x+F2;

write (x,y, xt+y)
end.

2.0

gpoeoooomonOOEo Iyl

Should print:
3 oF
al 6 10

The VAR declaration comes before the BEGIN, and informs the compiler that the
identifiers x and y are “variables” which can take integer values. As the name implies
variables can change in value throughout the execution of the program. In line 3 thé
value of x is set to 3 and the value of y is setto 27. Then later, x issetto4 and y is se£ tox
12, or4 + 2=6. Notice that y:==y+2 could also have been written settingy to27 + 2
;\I%G\égnables can also be declared as BOOLEAN and many other types besides

2.2.2 Example 8 Repetition using “FOR’ loops

vari: integer;

begin

writeln ('going up));

fori:= 1 to 5 do writeln (i);
writeln (‘going down’);

fori:= 5 downto -1 do writeln (i);
end.

Should print:
going up

going down

=1 (59 (©9) TS (O8] (Sl (5 @8) i—

(@)

=l

The statement following the “FOR . . DO" (in this case a WRITELN statement) is
repeated once with each value of the variable i.

2.2.3 Example 9 “if" statements

vari: integer;
begin
fori=1to 11 do
begin
write (i);
if odd (i) then writeln (" is odd)
else writeln (' is even)
end
end.

'

22

The result should be:
1 is odd 7 is odd
2 is even 8is even
3is odd 9is odd
4 is even 10 is even
5is odd 11 is odd
6 is even

“if" statements give the computer a choice of two statements to do, depending on the
value of the Boolean expression. (Remember, Boolean expressions can either be
TRUE or FALSE). The “else” part of a conditional statement is optional but —
IMPORTANT— “else” is never preceded by a semi-colon.

The WRITE and IF statements in our example are enclosed in BEGIN . . . END to make
them act as a single statement to be repeated by the FOR loop.

2.2.4 Example 10 finding the average
This example introduces keyboard input, and a more general sort of loop.

var total, count, x : integer;
begin
total:=0; count:=0;
write ('Type some numbers:);
repeat
read (x);
total:=total+x;
if x>0 then count:=count+1;

until x=0;
writeln ('The average is', total/count);
end.

When you run this program, the computer should invite you to type aseries of numbers.
Try typing:
3 47 5 1S5 0 <return>

The computer should reply with
The average is 6.35000E+01

The statement read (x) tells the computer to accept an integer from the keyboard qnd
place its value in the variable x. If you type something the computer doesn't recognise
as an integer, you might get the message

INTEGER READ ERROR line 60
and the program will terminate.

The "/ operator gives division with a floating point, or REAL result (whereas DIV gives
an integer result). More about REAL arithmetic later.

The "real” number was printed in “scientific” notation, which will be familiar to many
calculator users. The number following the “E” represents a power of 10, so that
6.35E+01 means "6.35" (times 10 to the power of +1) or 63.5.

112000000

gooaaanant

¢

The printing format can be changed to make it more legible by specifying the total
number of characters you would like printed and the number of digits after the decimal
point. (Rounding is done automatically). Thus:

Writeln (‘The average is’, total/count : 10: 3)
would have printed
The average is 63.500

The number is printed with 4 leading blanks to give the 10-character field you
specified.

"

The “repeat”..."until” loop simply executes the enclosed statements until the condition
at the end turns out to be TRUE. In our example the loop is terminated when a zero is
read from the keyboard.

2.2.5 Example 11 Case statement

This sample introduces a slightly more elaborate way of choosing one of several
statements:

var verse, i: integer *
begin
for verse:=1 to 4 do
begin
writeln;
fori:= verse downto O do
case i of
3: writeln('three men’);
2: writeln('two men’);
1: writeln('one man’);
0: writeln('and his dog)
end
end
end

This should result in the printout:

one man
and his dog

two men
one man
and his dog

three men
two men
one man
and his dog

case error line 70

The error message was caused because in the last verse i becomes 4 and there is no
corresponding label in the CASE statement. Case labels can also be combined, for
example

45,6 : writeln (Many men);

22

2.2.6 A note on error messages

The “CASE ERROR" message is called a “runtime” error message because it occurs
while the program is actually running. There are several such messages which you
may encounter (see section 8).

By now you may have started to experiment with your own programs. (This is probably
the best way ot finding out what is and is not possible in Pascal). If so, you will sooner or
later get one of the compiler's error messages. This may also happen if you make o
mistake in typing one of the examples. The simple program

var x : boolean;
. integer;
begin
read (x);
write (x)
end.

would cause the following message during compilation:

compiling

---ERROR TYPE 46 LINE 20 NEAR X
program O 090d

1 error(s)

Compilation complete

NOTE---the line number may sometimes be out by 1 line or even more, depending on
how long the compiler needed to detect the error.

Typing “L" in response to the prompt:
ready

displays the program on the VDU as well as compiling it. All the line numbers and
errors are marked. In our example:

10 var x :boolean;
20 x <-ERROR 46
20 X : integer;

30 begin

40 read (x);
510) write (x)
60 end.

The tull version of line 20 is retyped underneath the error report.

The computer will not let you run a program if there are any compiler errors.

Correcting errors

This can be done using the editor, without having to retype the whole program. To
correct the small example above you might type:

list

259

K

1

101

01

gooooaooooooooonnnl

L

to list the program on the screen:

10 var x : boolean;
20 X : integer;
30 begin

40 read (x);

50 write (x)

60 end.

To delete the second line, type 20 followed by <return>. Typing “list" again should
give:

10 var x: boolean;

30 begin

40 read (x);

50 write (x)

60 end.

Line 10 is still wrong. We want to read and write integer, so we type
change /boolear/integer/

which makes the substitution and retypes the line.

“list" now should print the correct version of the program.

10 var x: integer;
30 begin

40 read (x);

50 write (x)

60 end.

The program doesn't do much, just reads a number from the keyboard and prints it out
again.

For a more complete explanation of how the editor works, see the command summary
(section 7). This also explains how to load and save your Pascal program on diskette.

2.2.7 While statement
There is another sort of loop in Pascal, besides REPEAT and FOR loops.

The WHILE statement is like the REPEAT statement except that the test is done at the
beginning of the loop (so that the loop need not be executed at all). Also, like the FOR
loop only one statement may be repeated (or a sequence of statements enclosed in

BEGIN and END).
Example:
i=1,
whilei <=5 do
begin
writeln (i);
i=itl;
end;
Has the same effect as

fori:=1 to 5 do writeln (i);

2%

2.3. MORE ABOUT DATA TYPES IN PASCAL

2.3.1 Example 12 Floating point numbers
begin
writeln (3.3, 33.0, 330.0, 0.33);

writeln (-3.3E3, 3.3E-1, 4.5+2.1)
end.

The computer should print

3.30000E+00 3.30000E+01 3.30000E+02 3.30000E-01
—3.30000E+03 3.30000E-01 6.60000E+00

The presence of either a decimal point or an exponent (the "E” part) in a number tells
Pascal to treat it as a floating point or a REAL number.

3.3E3 means 3.3 times (10 to the power of 3)
in other words 3.3 x (10x10x10) or 3300

Floating point numbers in Pascal have an accuracy of 9 digits and may range in size
from about 1E-38 to 1E38. In contrast to integer, you should not expect Pascal real
arithmetic to be exact. This means, for example, that 4.0 may in fact be printed as
3.999999. Also you can't rely on testing real numbers for equality. 2.0 + 2.0= 4.0 may
not always be true! '

2.3.2 Example 13 floating point arithmetic

var x, y: real;

begin
x:=9.1;
y =8.7;

writeln (x+y: 7:2, x-y: 7:2, x*y: 7:2 x/y: 7:2);
writeln (sqr (x) : 7:2, sqrt (x): 7:2, abs (x): 7:2);
: write (trunc (%), trunc (y), round (x), round (y)
end.

Should print:

FESOREE 04088 7917 ¢ o1 .05
SIS 310D 9710
9 8 g 9

We ha_ve glreqdy met +, —, * and /. They are used to mean, addition, subtraction,
multiplication and floating point division (DIV means integer division. DIV and MOD
shouldn't be used with reals).

2.3.3 SQRT, SIN, ARCTAN, LN, EXP, ROUND, TRUNC

SOR (X) means the square of X

SORT (X) means the square root of X

ABS (X) gives the absolute value of X

TRUNC (X) gives the integer (whole number) part of X
ROUND (X) rounds X to the nearest integer.

TS

tqooaooooanoaonnnnnnnnnd

Some other useful methematical functions are

SIN (X) gives the sine of X (Xis in radians)

COS (X) gives the cosine of X (X is in radians)

ARCTAN (X) gives the angle whose tangent is X (in radians)
LN (X) gives the natural logarithm (base e) of X (for X> 0)
EXP (X) gives the number e raised to the xth power.

1 radian = 57.29578 degrees
e=2.718281

2.3.4 Example 14 Output formatting constants.

program waves;
constfl = 0.5; £2 = 0.05; amplitude =19;
varxl, x2, y :real;
begin
x1:=0; x2:=0;
repeat
xl:=x1 +{l;
x2:=x2 + £2; .
y:=sin (x1) * sin (x2) * amplitude;
writeln ('x’ : round (y) + amplitude)
until false
end.

The program should print an amplitude — modulated sine wave.

Because of the REPEAT. . UNTIL FALSE loop, example 14 will continue printing almost
forever (at least until x1 or x2 becomes too large!) One way of stopping it would be to
tum off the power, but if you did that you would lose the program. A better way is simply
to press the STOP key.

The computer should print:
BREAK AT LINE xxxx3x

Where xxxxxx is the line it happened to be executing when you pressed STOP. (It this
doesn't happen try again)

The "Program” header is optional in OXFORD Pascal and in this case simply serves to
give the program a name: WAVES. The name has no significance to the computer; it's
merely there as an aid to documentation.

Any text enclosed between the pairs of symbols (* and *) is also ignored by the
compiler. This facility can be used to write comments which help human readers to
understand the program. Constants, introduced by the keyword CONST, are values
which don’t change throughout the program. Itis an error to use a constant on the left of
an assignment statement or as a parameter in the READ statement.

“CONST" declarations are useful for giving names to special values (for example PI =
3.1415926), and they make the program easier to change later. Try using the editor to
alter the frequencies fl and {2 and the amplitude to give different wave pattemns in
example 14.

2.3

(

2.3.5 Characters

Note how the program uses a field width specification (a colon followed by an integer
value) to tell the computer how many characters to allocate to the 'x’ when printing. If
too many characters are asked for, enough spaces are printed to make up the
difference. If not enough are asked for, the string is truncated on the right, for example

write (Hi there' :5)
would print:
Hith

Numeric values, however, are always printed in full even if too few characters are
specified.

2.3.6 Example 15 64 graphics

const ncols = 40;
var line, i: integer;
begin

page;

for line:=1 to 24 do

fori:=1 to ncols do
it odd (line) and odd (i) or
not odd (line) and not odd (i) then write (chr(177))

end.

This should fill the screen with a patterm. CHARACTERS in Pascal strings of length 1,
for example:

‘X’ :?/ "

They belong to the data type “Char”’, which has 256 possible values in OXFORD
Pascal, corresponding to the ASCII character set.

The function ord (ch) gives the ASCII integer code (between O and 255) for the
character ch, while chr (x) gives the character represented by the integer x. So ord
("?)=63 and correspondingly chr(63)="?".

Note — On the 64, the OXFORD Pascal data type “char” has been extended to the
range 0..255 to allow the 64 graphics font to be used. Two of these characters were
used in the program above. Try writing programs to give different pattems, using the
available characters. A simple change would be replacing 177 and 178 by 173 and
174. The statement “page” simply clears the vdu screen.

258

cooqooooOoOoonaonaonannandl-

2.3.7. Example 16 Arrays

Suppose you wanted to read i some numbers and print them out in reverse order. You
would have to store the numbers somewhere because you can't start printing until the
last number has been read. If you knew that there were always going to be three
values, you could write:

var x1, x2, x3 :integer;
begin
write (‘Type 3 number :);
read (x1, x2, x3);
writeln (x3);
writeln (x2);
writeln (x1)
end.

But for 50 values this would get a bit tedious!
The answer is to use an array variable:

const n=3;
var X : array [1..n] of integer,
i:integer;
begin
write (Type ', n:1, " numbers: ’);
fori:=1 to n do read (x[i]);
for i:=n downto 1 do writeln (x[i))
end.

Running the program and typing the data:
463 7S 980
Should give the result:

980
79
463

The declaration of x really declares n variables which can be referred to by giving an
index in square brackets. The elements of the array x are thus x[1], x[2], ..., x[n].

The constant n was used so that the number of values read in by the program can
easily be changed by dltering just one line.

Armray elelments can be any valid Pascal data type, including including another array.
This allows two dimensional (or indeed any dimensional) arrays, and a chess-board for
example may be represented as:

var chessboard: array [1..8] of array [1..8] of chesspiece;

Where chesspiece is some suitable data type, probably a user defined type (more
about this later). The 5th square of the 3rd row of the chess-board could then be
referred to as:

Chessboard [3] [5]

208

T

Because arrays of arrays are used often in Pascal programs, the abbreviation
“chessboard [3,5] is allowed, and similarly in the declaration:

var chessboard : array [1..8, 1..8] of chessspiece;

This can be extended to arrays of any dimension.

2.3.8. Detining your own data type

None of the datatypes so far mentioned (integer, real, boolean, or even char) would be
really suitable for describing a piece on a chess-board, so Pascal lets you define your
own. This may be done in TYPE DECLARATION, for example:

type chesspiece = (pawn, knight, bishop, rook, queen, king);
Then a variable of type CHESSPIECE could take any of these six values for example:

var mypiece, yourpiece:chesspiece
begin

mypiece:=r100k;
yourpiece:=queen;

Type declarations come after constant declarations and before variable declarations.
The identifiers used in an ‘enumerated’ data type like CHESSPIECE must be unique,
they can't appear in other enumerated types or be declared as constants or variables.
Enumerated types are ordered so that our chess pieces can be compared using =, >
etc:

king>queen
queen>rtook

and so on:

Three functions are also defined: PRED, SUCC and ORD
pred (x) gives the value preceding x.
succ (x) gives the value succeeding x.

ord (x) gives the position of x within the data type.
(starting with pawn = 0)

so pred (bishop) = knight

succ (rook) = queen

but pred (pawn) and succ (king) are both meaningless
ord (knight) = 1

ord (rook) = 3, and so on.

2.3

gooqooooooonaononononang

2.3.9 Example 17 The sieve of Eratosthenes
This program finds and prints all the prime numbers between 2 and 127.

program Eratosthenes;
constn=127,
var sieve : set of 2..1;
number, i: integer;
begin
sieve := [2..n];
for number ;= 2 to n do if number in sieve then
begin
writeln (number);
fori:= 2 ton div number do
sieve ;= sieve — [i*number]
end
end

A prime number is divided only by itself and 1. Our “sieve” used for finding the prime
numbers, is a new type of variable called a SET variable.

Sets in Pascal are collections of objects enclosed in square brackets. Either an object is
in a set or it is not, so:

and [1,1,3,3,2] are all equivalent.

The abbreviation x..y in a set means all the items between x and y inclusive, so:
[1.4,101=[1,2,34, 10]

We can test whether an item is in a set by using the operator IN. Thus “4 in [1..5]" will
give the Boolean result: TRUE.

The type of a set can be any scalar type (ie no an array or a set) except REAL. Values
are restricted to the range 0..127 (so “set of char” from chr(0) to chr(127)) is
acceptable).

Now back to our sieve program. Starting with the number 2 and working upwards, if a
number is still in the sieve then it's a prime. We simply eliminate all multiples of that
number from the sieve because they are not prime. Operations allowed on two sets x
and y are:

Xy which gives the set of all items present in either x or y or both.
X—Y which gives all items present in x which are not also in y.
% gives all the items present in x and also present in y.

X=y tests if two sets are equal.

x<>y tests if two sets are not equal.

x<=y testsif all items in x are also in y.

X>=y tests if all items in y are also in x.

2:3

2.4 PROCEDURES AND FUNCTIONS

2.4.1 Example 18 procedures

var ch: char,
procedure lineof (wotsit :char);
var i: integer;

begin
for i:=1 to 30 do write (wotsit);
writeln

end; (¥ of procedure “lineof” ¥)
begin (* of main program ¥)

lineof ("?');

writeln;

for chi="c' to'f do lineof (ch)
end.

youdon'tneed to type the comments (* ...*) if you don't want to. These are there to help
explain the program.

The computer should print:
(PRPRP s

GECEET
dddddd ..
eeeeee

AT

Procedures are used to separate sections of code from the main program, either to
make what the program does clearer by dividing it up functionally, ot to allow the same
code to be “called” from various parts of the program. The procedure “lineof’ has a
PARAMETER "“wotsit” (which takes the data type CHAR). When lineof is called it must
be followed by acorresponding actual parameter in brackets. Then “lineof” simply
writes a line of wotsit's on the screen.

If a procedure has no parameter then the brackets are omitted. The variable Iis “local”
to the procedure lineof, the main program doesn't know about it. However lineof could
if necessary access the ‘global variable CH. Using local variables helps conserve
storage, since they are destroyed when the procedure finishes. Procedures are really
mini-programs in their own right. They can have their own constant and data type
declarations and even their own procedures.

"WOTSIT" is called a VALUE parameter because a value is substituted for it when the
procedure is called. Lineof could change the value of wotsit without affecting the main
without affecting the main program. VARIABLE parameters on the other hand are
substituted with variables when the procedure is called.

24

THMEBHEEMEHHHBMMw

2.4.2 Example 19 Variable parameters

var x,y :integer;
procedure swap (var a,b : integer);
var temp: integer;
begin
temp:=ga;
a:=b;
b;=temp
end;
begin
x:=4; y:="77,
writeln (x,Y);
swap (x,y);
writeln (x,y)
end

This should give the result

4 77
77 4

Note that it is alright to have local variables, constants and parameters with the same
names used in the main program. For example:

procedure swap (var x,y : integer);

The computer won't get confused (but you might!). The variable parameters a and b
are used by SWAP as a means of retuming a result to the main program. Another way
of returning a value is to define a function.

2.4.3 Example 20 Defining a function

vari: integer;
function cube (x : integer) : integer,;

begin

cube ;= x*x*x;

end;
begin

fori:= 1 to 20 do writeln ('The cube of,

i:2,is, cube (i)

end.
The program should print some numbers and their cubes. Apart from having to specify
a retum value, functions are just like procedures.

2.4

2.4.4 Example 21 Recursion

A recursive function or procedure is one that calls itself. Using recursion can give neat
solutions to mind-bending problems like the “Towers of Hanoi”. In this well known
puzzle, there are three piles of discs. To start with piles 2 and 3 are empty, and the first
pile has a number of discs stacked in order of size, smallest at the top. The game is to
get all the discs in the same order (smallest on top) over to the 3rd pile, moving only one
at a time, with no disc ever resting on a smaller disc.

program Hanoi;
var ndiscs: integer;
procedure move (source, destn, spare: 1..3; n:integer);
begin

it n>1 then move (source, spare, destn, n—1);

writeln('Moving from’, source : 2, " to’, destn : 2);

if n>1 then move (spare, destn, source, n—1)
end;
begin

write (How many discs ?);

read (ndiscs);

writeln;

move (1,3,2,ndiscs)
end.
Moving one disc is trivial. To move n discs we first move the top (n—1) to the spare pile
and then move the bottom one. Then the top (n—1) are moved using the same
technique.
Recursive programs are not always the most efficient, though. They tend to gobble up
memory because the computer has to save the variables for each call on the stack. If
you make ndiscs too large the computer will run out of memory and print STACK
OVRFLOW - line xxxx. The same will happen if you declare more variables in a
program than you have memory available, or if you try to compile too large a program.

2.4.5 Text Files

Textfiles are special Pascal variables having the data type TEXT which are essentially
streams of characters with no fixed size. Two are preassigned in OXFORD Pascal.
“Input” and “output” are asociated normally with the keyboard and the VDU display
respectively.

By default, “Input” is implied in READ, READLN, EOLN and EOF and “Output” is
implied in WRITE, WRITELN and PAGE. So for example,

ECF is really short for EOF (INPUT)
WRITELN (‘Hi") is really short for WRITELN (OUTPUT, "Hi')

Each textfile has an assiciated buffer variable of type CHAR (the file name followed by
an upward arrow), for example: input

The procedure call:

get (input) reads the next character from the keyboard and puts it in the variable
input.

2.4

poeeooaaoooEooooloRoinnld

put (output) writes the contents of output to the VDU. So if X is a character variable:

read (x) is equivalent to x :=input ; get (input)
write (x) is equivalent to output :=x; put (output)

Newlines are special character in textfiles. When a file buffer contains one,
assignments like

Y% 5= Aol
will set x to a space. Also, the end of line function EOLN will retum TRUE.
READLN is like READ but afterwards skips to the beginning of the next line by doing:

while not eoln do get (input);
get (input);

2.4.6. Example 22 strings

program revwords;
const linesize = 64;
type string=packed array [1..LINESIZE] of char;
var word:string;
nchars, i :integer;

procedure skipblanks;
begin while (input="") and not eoln do
get (input) end;

procedure swap (var s:string;i, j:integer);
var temp:char,

begin

temp:=S][i;

S[]:=3[j];

Slil:=temp

end;

begin
repeated if eoln then readln;
skipblanks;
while not eoln do
begin
nchars:=0;
repeat
nchars:=nchars+1;
read (word [nchars));
until input="";
fori:=1 to nchars div 2 do
swap (word,i,nchars —i+1);
write (word:nchars, ' *);
skipblanks
end;
writeln;
until false
end.

2.4

The program reads words and writes them out with the letters reversed. For example:
Mary had a little lamb <returm>

would print,

yraM dah a elttil bmal

To stop the program, hit <stop>.

Strings of size n in Pascal are treated as “packed array [1..n] of char’. Packed arrays
are like ordinary arrays but are compressed to optimize storage. Packed array
ELEMENTS can't be used directly as VAR — parameters (but whole arrays can, as in the
example).

Examples of string operations in Pascal:

var str: packed array [1..4] of char;

begin
strr="when’;
writeln (str>'what’)
end.

Would print TRUE because “when" is greater than “what" (Lexicographically, i.e.
dictionary order).

2.4

oooaaooooanoooonanoondy-

e B ANCED FEATURES

2.5.1 Example 23 Records

Program clock;
const delay = 1600; (*approx, for 64%)
var i:integer;
clock:record
lavesg (€, 28k
mins, secs :0..59;
end;
begin
write (Enter the time, in hours minutes seconds : *);
read (clock.hrs, clock.mins, clock.secs);
with clock do repeat
fori= 1 to delay do (*nothing®);
secs=0 then
begin
mins:=(mins+ 1)mod 60;
it mins=0 then
hrs:=(hrs+1)mod 24;
end;
writeln (hrs:1,"",mins:1,"",secs:1)
until false
end.

The program should print out the time roughly every second, for example:
Enter the time, in hours minutes seconds : 1 39 56
Should print:
I = 3fel: 57/
[§28068
[F989H50)
134010
etc
This example is intended to be demonstration of the use of records in Pascal, not a

replacement for the 64 built-in clock! See the Reference Manual (3.9.10) for how to
access the clock.

Records are a way of combining several conceptually related variables into one
structure. The record can then be treated as a whole or the parts can be accessed
individually using the dor notion.

The WITH..DO statement tells the computer to treat the elements of “clock” as though
they were locally defined individual variables for that statement, removing the need
for the “clock.” prefix.

Record elements can be any type (for example other records or arrays), and in
addition an optional “variant” part is allowed (see reference manual).

2.5

2.5.2 Example 24 Pointers

var p,q: integer,
begin
new (p); new (q);
prE=8;
q:=4;
write (p,q)
end.

Should print
3 4

The variables p and g are not integers but ‘pointers’ to integer variables. The actual
space for the variables to be stored at is created “dynamically” (in other words while
the program is running) by the procedure NEW. This allows programs to create
variables as required. A major use of pointers is in processing linked lists:

Example 25 Reversing a line of characters using a list.

program revchars;
type itempointer = item;
item = record
value:char;
next: itempointer
end;
var list, p: itempointer;
begin
list:=nil;
repeat
new (p);
read (p .value);
" next=list;
list=p
until eoln;
repeat
write (p .value);
p:=p .next
until p=nil
end.

The input: Mary had a little lamb.
Should give the result: bmal elttil a dah yraM

2i5

gaoaaooooooooanonanoadnd

This program defines a record containing a pointer to itself. (A recursive definition).
Linked lists give very flexible storage butyou have to keep careful track of what points
to what.

In standard Pascal the procedure DISPOSE (P) releases the storage assigned to the
pointergd and can be used whenp is no longer needed.

In Resident mode OXFORD Pascal, dispose has no effect. (However, it is usually
possible for programs themselves to implement some sort of “free list” of unwanted
items). The Pascal keyword "nil” is a pointer value which points to no variable.

2.5.3 Example 26 “goto” statements

label 294, 33;
begin
33: writeln ('This should be printed);
goto 294;
writeln ('This shouldnt);
294: writeln (‘Stuck in a loop’);
goto 33
end.

This should print:

This should be printed
Stuck in a loop

This should be printed
Stuck in a loop

ete.

“labels” used with goto statements must be integers and should be declared before
constants. data types and variables. GOTO'S should be avoided where possible
because they destroy the structure of the program. A common use, however, is for
“disaster” exits from nested procedures or statements. Jumping INTO aloop or a
procedure will cause unpredictable results.

2.5.4 Extensions to standard Pascal

These are described in the Reference Manual (3.10). One usetul procedure is VDU:

Example 27 “poking the vdu screen

var i: integer;
begin page;

fori:=1 to 40 do vdu (i mod 4,i,'x’)
end.

This should produce a pattern of x's on the screen. Vdu (i,j,ch) stores the character ch
at row i, column j.

Remember, PAGE clears the VDU screen.

25

2.6 DISK BASED OPERATION

So far this manual has been concemed only with using the resident compiler, which is
always in RAM. While this may provide an ideal environment for leaming Pascal, it
necessarily restricts the number of commands available, and the space remaining for
user programs.

As you become familiar with Pascal, you will probably want to write larger programs.
Using the disk-based compiler and linker, Pascal programs of 6000 lines or more may
be run, and this may be extended even further by using program chaining.

You may also want to write programs which access diskette files. While this is possible
in resident mode by opening channels to the disk unit, in disk mode the full Pascal file
syntax is available, permitting files of any data type.

Disk mode is entered automatically by typing:
DISK

This removes the resident compiler from memory, making the space available for
editing.

Once your program is edited, it MUST be saved on disk, for example:
put prog or put O:prog

saves it in a file called “prog” on drive O. To compile the program type:
comp prog

The compiler output should be something like:

Insert your system disk followed by a <return>

loading compiler...

Insert your data disk followed by a <retum>

Pascal compiler vx.x
program O 0009
0O error(s)

compilation complete.

There are various compiler options for generating listings efc. If all goes well the
compiler will put the object code in a file “prog.obj” which can then be executed. If
there are any errors during compilation then the Pascal source must be corrected using
the editor and re-compiled. (Use the command “get prog” to read your Pascal text
back into memory).

Finally, type:
ex prog
to execute the object file (prog.obj).

The name of each procedure or function is printed out as it is compiled, together with
its static nesting level (O for the main program, 1 for outer level functions and
procedures, and so on). A hexadecimal address is also printed, giving arough idea of
its relative position in memory.

26

gaqqaouaooooonononannonnld

The following table summarises the differences between resident and disk mode:

Resident Mode

Compiler always in RAM

Pascal source and object code in RAM

Language differences (see Reference Manual for details):
Textfiles only

DISPOSE is a no-op

Disk Mode

Compiler only in RAM during
a compilation

Source and object code
held in disk files

All file types supported

Disk files fully supported
PACK, UNPACK implemented
DISPOSE fully implemented

Program chaining allowed

26

2.7 EDITOR COMMAND SUMMARY

Line numbers

A command beginning with a number is recognised by the editor as a new program

line, and is inserted in the program text in the position comresponding to that number.

For example:

10 end.
5 begin (* this command comes first *)

A line containing just a number has the effect of deleting that line from the program.

Auto
Enables or disables automatic generation of line numbers.
Examples:

auto 20 <return> — enables auto numbering with an increment of 20.
auto <return> — disables auto line numbering.

default — auto 10.

List

Lists the program cumrently in memory.
Examples:

list 100-200 — lists entire program

list 330 — lists line 330 only

list 100- — lists lines 100 onwards

list 100-200 — lists lines 100 through 200

list -200 — lists up to and including line 200

Note: The STOP key pressed during a listening will halt it completely, while pressing
any other key freezes the listing until a second key is pressed.

Upper, Lower

Set upper or lower case display mode (The contents of the program memory are
unaffected). Default : lower.

Switching between upper and lower case can also be performed altemately by
holding down the shift key whilst depressing the CBM key.

Basic

Return to BASIC, reverting to upper case display.

257

gagoaqaooanoEnaooooaaRnadny

New

Erase the program memory.

Disk

Enter disk compiler mode.

Resident

Re-load the resident compiler.

Number

Renumber the program lines in memory.
for example:

number 1000,2000,30

renumbers lines 1000 onwards, starting the new numbers at 2000 and with an
increment of 30.

Note that the new starting number must be greater than or equal to the old starting
number.

Find

Find and print occurrences of a string in the program.

find /function/ —finds all occurrences of “function”

find /function/,100-250 — finds all occurrences in lines 100 through 250.

The “/" can in fact be any delimiting character not contained in the search string.

See note under “list” command to halt execution.

Change

Asfind, but substitutes a second string for all occurrences found of the first. For example:
change/function/procedure/,150

Changes all occurrences of “function” in line 150 to “procedure”.

See note under “list” to halt command execution.

Delete

Deletes program lines (parameters as with LIST). “Delete” with no parameter is
equivalent to NEW.

2/

{

Put

Saves the program on diskette. For example:

put O:sara—saves in a file called “SARA" on drive O. (drive must be initialised).

put @1 :jim —saves in an existing file called “JIM” on disk 1.
(drive must be initialised).

Note: the drive defaults to drive O.

Get

Reads a program from diskette. For example

get sara (searches both disks if required).

R (or Run) Resident mode only).

Run the program in memory (compiling first if necessary).

L (Resident mode) — compile, and display the program on the VDU.
P (Resident mode) — compile and list on the printer.

COMP (Disk mode) — compile a program

comp sara— compiles file “sara” giving a relocatable object file “0:SARA.OBJ”

comp sara,l - “1" option gives a listing on the VDU.

Other options: P — list on printer
N - no object code
C — no range checking or line numbers in the object file
(giving slightly faster and more compact code)
1 — object file on drive 1

Ex (Disk mode) — execute an object file
ex sara — executes SARA.OBJ
Note —- COMP and EX both clear the text buffer.

Set sets the printer device number, printer type (Ascii/64) , auto line feed flag and is

menu driven.

Hex converts from decimal to hexadecimal.
hex 32 <retumn> gives the result 0020

Decimal convert from hexadecimal to decimal.
decimal 7f <retum> gives the result 127

Dump list a program on the printer

The DUMP command has the same syntax as LIST.
Cold cold-start 64 BASIC.
2.

goaqgqooooooooaonoooonadl

BASIC commands
Any of the BASIC direct-mode commands below may be used in the editor:

PRINT (or ?)
PRINT #
OPEN
CILOSIE
CMD
POKE

SNS

FOR

ILIET

examples:

let ti$ = “120000"

4%

?1re (0)

fori=1 to 20: ?i, i*i: nexti

— set clock to mid-day
— print the time
— print the number of bytes free

Link (disk mode)

For large programs it is desirale, (and often physically necessary) to have some form of
modularization. Several Pascal source files with inter dependent functions and
procedures may be compiled separately and their object files later “linked” into one
file. The linker may also be used to produce directly executable 64 files.

Examples:

link O: prog=myprog, yourprog,anyprog

links the files MYPROG.OB]J, YOURPROG. OBJ] and ANYPROG.OB]
into one object file PROG.OBJ on disk drive O.

Note — “link” clears the text buffer.

Restrictions

(a) The program being linked must have indentical variable declarations at the
outer program level.

(b) Each outer— level function or procedure may only be defined in one file.

(c) It the other files need to refer to this function or procedure, a duplicate header
should be included, with the body replaced by the keyword “extem”.

(d) The first file in the list is assumed to contain the main program. (The other files
would normally just contain a dummy main program:

begin
end.)

20,

Linker example:

file f1:
program test (input, output);
var i: integer;
procedure x; extem; (¥ x is defined in the other file #)
procedure y;
begin
write (i)
end,
begin (* main program ¥)
X
end.

file £2:
program testpart2(input, output);
vari: integer; (* var's must be identical to f1 #)
procedure y; extemn; (* y is defined in f1 ¥)
procedure x;
begin
i=3;
write (‘three =');y;
end;
begin
end.

The command sequence might be

comp fl

comp 2

link O:test=11,12
ex test

The program should print “three = 3"

Including other files in a compilation (disk mode only)

Ifthe character “#”, followed immediately by a diskette file name, is placed at the
beginning of a Pascal source line, then this indicates to the compiler that the contents
of the specified file are to be included at that point in the program.

This is extremely useful when program segments are to be linked, as global
declarations (which need to be the same in each segment) can be kept in a separate
file thus simplifying any alterations.

The facility cannot be nested (the included file must itself contain no #filenames).

Locate (disk mode) — makes an acceptable file which can then be loaded under
BASIC and executed by just typing “RUN".

example: locate O:xyz=jane
Creates an executable file xyz on drive O from JANE.OB]J
NOTE - “locate” clears the text buffer.

2/

COOeaaaaouoaoooanannnndl

2 OERRER MESSEGES

? Syntax ermror — editor command is mis-spelled or has invalid parameters.

?0Qut of memory error — there is insufficient memory left to do the command you
specified, for example inserting a new program line or "GETTING" a file.

? lllegal quantity error— bad numeric input to an editor command, for example

"NUMBER".

?File data error— one of the Pascal library files is not present on the disk or else has

been corrupted.

Compiler not resident— The L,P and R commands may only be used in resident mode.

No source program — You typed L or R with no program text present in the computer's

memory.

RUNTIME ERRORS
1. STACK OVERFLOW

2. INTEGER READ ERROR
3. INTEGER OVERFLOW

4. ARRAY INDEX ERROR

5. VARIABLE OUT OF
RANGE

6. CASE ERROR

7. BAD PCODE

8. SET VALUE ERROR

9. FLOATING POINT
OVERFLOW

10. FLOATING POINT
READ ERROR

11. UNDEFINED GOTO

12. COMPLEX LOG OR
SQUARE ROOT

— (during compilation) program is too big
— (during execution) program needs too much variable
space or uses to many levels of recursion.

— an integer was expected from the keyboard.

— overflow when multiplying two integers, or DIVing or
MODing by zero, or TRUNcating or ROUNDing too large

a number.

— an expression used to index an array is outside the
declared range.

— a variable, or a procedure or function parameter has
been given a value outside the allowed range for that
data type.

— there is no label in a case statement corresponding to
the value of the selection expression.

— your program has been corrupted, or (hopetully not) a
system bug. Occurring at random, this may indicate a
memory fault.

— a set element has gone outside the range 0..127

— may occur if the result of + — x / SOR or EXP is too large.

— a floating point constant was expected from the
keyboard.

— a GOTO statement referenced a non-existent label.

— attempt to take the log or square root of a negative
number, or the log of zero.

243

ISRRINEIN@IR@EENE@R:
READING

14. FILE NOT OPEN FOR
WRITING

15. END OF FILE

16. NOFREEI/O
CHANNELS
17. DEVICE READ ERROR

20 to 72. DISK ERROR

28

—READ or GET without a reset first.
— WRITE or PUT without a rewrite first.

—attempt to read a file with EOF true.

— 64 operating system only allows ten files to be open at
one time.

— Bad status byte encountered while reading data from
the IEEE bus.

— An error status has been detected on the floppy disk
unit. Returns the error type and if possible the offending
filename.

poqooapaoaaooooooononunl

2.9 SAMPLE PROGRAMS

Example 1

The character'o' should appear to “bounce” around the VDU screen. As a variation, try

deleting line 13 to produce a pattern on the screen.

program bounce (input,output);
const thecowscomehome = false;

DELAY = 30;

var row, col, i, j, d : integer;
begin

row := 0;

col:=0;

i=1;]:=1;
page;
repeat

ford := 1 to DELAY do;
vdu (row, col,*);
row := col+j;
row ;= row+i;
if (row > 23) or (row < 0) then begin
begin
==
row = row+i+i;
end;
if (col > 39) or (col < 0) then
begin
&= =
col:= col+ijtj;
end;
vdu (row, col, '0’);
until thecowscomehome
end.

29

Example 2 The game of Nim

program nim;
const NROWS = 24;
delay = 1000;
coin= 168;
var pile : array [1..3] of 0..NROWS;
move : record
ntaken, pileno : integer
end,;
i:integer;
key: char,
function gameover : boolean;
begin gameover := (pile[1] + pile [2] + pile [3] = 0) end;

function asc (n : integer) : char;
begin asc := chr(n + ord ('0')) end;
procedure display;
var p, row, col, firstcol : integer;
begin
page;
ferpi=tltici8ide
begin
firsteol = p*10;
for row :=0 to NROWS-1 do
if pile [p] >=NROW S-row then
for col := firstcol +3 to
firstcol+5 do
vdu (row, col, chr (COIN));
if pile [p] >= then

vdu (NROWS-1, firstcol, asc (pile[p] div 10));
vdu (NROWS-1, firstcol+1, asc (pile[p] mod 10));

end
end;

289

R e e o

—=
%
=a

procedure signon;
begin
page;
T Y G NIV =)
writeln;
writeln;
writeln (I will set up three piles of coins);
writeln ('To move, take any number of coins away’);
writeln ('from any pile. The player who clears);
writeln (‘the screen wins. *);
writeln;
write (' Now hit any key to start : *);
while getkey = chr (0) do;
end;

Procedure hismove;
var ok : boolean;
begin
writeln ('Now enter your move :');
with move do repeat
writeln;
write (Pile (1,2 or 3)?);
read (pileno);
ok := pilenoin [1..3];
if ok then
begin
write (Number to take away ?);
read (ntaken);
ok := ntaken in [1..pile [pilenc]];
end;
if not ok then writeln ((What ?7);
until ok;
with move do pile [pileno] := pile [pileno]
— ntaken;
end; (* of hismove ¥)

%)

Procedure mymove;
var bit : array [1..3, 1..4] of boolean;
parity : array [1..4] of boolean;

219

firstbit, x, i, j : integer;
begin
fori:=1to3do
begin
x ;= pile

fori:= pile [i;

forj:=4 downto 1 do

begin
bit [i,] := odd (x);
x = xdiv2;

end;

end;

fori:= 1 to4 do parity [i] :=

bit [1,]] <> (bit [2,] <> [3,1]);

move.pileno = 1;
move.ntaken := 0
with move do

if not parity [1] or parity [2] or parity

i

[3] or parity [4])then

begin

while pile [pileno] = 0 do pileno

= pileno + 1;

if pile [pileno] =1 then ntaken:= 1

else

ntaken := random mod (pile [pileno]-1)+1

end
else begin
firstbit :== 1;

while not parity [firstbit] do
firstbit := firstbit + 1;

while not bit [pileno, firstbit] do

pileno := pileno + 1;
for i:= firstbit to 4 do

begin
=

forji= 8 downtelideie=x"2;

Iz

if parity [i] then

if bit [pileno, i] then ntaken

else ntaken := ntaken — x;

end
end;

with move do pile [pileno] := pile [pileno]

end; (* of mymove ¥)

:= ntaken + x

— ntaken;

—3
=
=
=
==
==
(="
=
==
| omm |

begin
signon;
repeat
fori:= 1 to 3 do pile [i] = random mod 10 + 6;
display;
repeat
hismove;
if gameover then writeln (Congratulations ... You win!’)
else begin
display;
mymove;
fori:= 1 to delay do;
display;
writeln (My move was ', move.ntaken
:3," from pile’, move. pileno :2);
if gameover then writeln (**** I win.");
writeln;
writeln;
end;

until

until gameover;

write (‘Another game ?);
while input=""do get (input);
read (key);

while not eoln do get (input);
key='n’;

page;

end.

23

3. OXFORD PASCAL REFERENCE MANUAL

This manual is intended to be used for quick reference by those familiar with Pascal or
a similar programming language.

3.1 GENERAL

3.1.1 Pascal keywords

These are reserved words in Pascal and cannot be redefined. They must be written
without embedded spaces or newlines. A complete list is:

and do function nil program type
array downto goto not record until
begin else if of repeat var
case end in or set while
const file label packed then with
div for mod procedure to

3.1.2 Pascal identifiers

These are names chosen by the programmer for variables, constants etc., and should
consist of at least one letter, followed by zero or more letters or digits. Upper and lower
case letters are equivalent. Identifiers should be unique in the first 8 characters, and
must not contain embedded blanks.

The following identifiers are standard (but may be redefined):

abs eoln new read sqrt
arctan exp odd readln succ
boolean false ord real text
char get output reset true

chr integer pack rewrite trunc
cos input page round unpack
dispose in pred sin write
eof maxint put sqr writeln

(see also section 9— extensions).

3.1.3 Other Special symbols

ar < ‘(apostrophe) | =
- <= .] :

& >= = (,

/ > &) :
- <> #)

These symbols should not contain embedded blanks.

gl

Gooaaaaaooodl

3.1.4 Comments
Pascal comments are enclosed by the symbols (¥ and #).

Comments are totally ignored by the compiler. They can contain any characters
except the closing delimiter “*)”.

3.1.5 Constants

Integer Constants
These consist of a sequence of digits, for example:

33 0001 O

No check is made to ensure thatthe value is less than 2##15. Integer constants must not
contain enbedded blanks or commas (see also section 9.1 on hex constants).

Real constants
These are of the form:

<integer part> . <fractional part>
or <integer part> E <exponent>
or <integer part> . <fractional part> E <exponent>

The integer and fractional parts are non-null strings of digits. The “E” may be in upper
or lower case in OXFORD Pascal. The exponent is a digit string which may be
preceded by asign [+ or-].

Real constants must not contain ANY embedded blanks.
Examples:

3,14159 4E-9 -387.4E11
ER=5(0)

A real constant which is out of range (greater than about 1E38) will cause an error.

Character and string constants

These are enclosed in single quotes, and may contain any character except a
newline. Single quotes are included in a string by writing them twice.

Examples:
'c,'$, " (character constants)
‘Hi there!’, 'Fred”s string’ (string constants)

(see also section 9.1 on hex constants).

3.1.6 Blanks

Any number of spaces or newlines may separate two keywords, identifiers, constants
or other symbols, but at least one blank is required between adjacent keywords,
identifiers and numbers.

3l

3.2 DATA TYPES AND OPERATORS

3.2.1 Interger

Pascal integers are whole numbers in the range — MAXINT to + MAXINT where
MAXINT is an implementation defined constant (32767 in OXFORD Pascal).

OXFORD Pascal stores integers in 16-bit 2's complement form, so integers may range
from —32768 to +32767.

Integer operators are

+ addition

— subtraction

multiplication

div integer division (result is rounded towards zero)

modremainder operator
— (unary operator) negation

+ and — complement results mod 2*¥16.
* div and mod are defined only on values in the range -MAXINT..MAXINT, and the
result must be in this range (otherwise an error occurs).

Division by zero causes an error.

xmody= x—((xdivy) *vy)

3.2.2 Real

Real numbers in OXFORD Pascal are held in floating point binary form with a 32-bit
mantissa (9 digits). The exponent can range from —38 to +38.

The operators +, —, * behave as for integers, but produce a REAL result. (Which will
cause an error if it is out of range).

The operator / denotes floating point division. Division by zero will cause an error.

Integer expressions and constants can be used wherever areal expression is
accpetable, but real values can't be used with DIV or MOD.

Conversion from redl to integer is done by the functions TRUNC and ROUND (sections
2.8).

3.2.3 Char

The Pascal data type “char” operates on an ordered set of characters. In OXFORD
Pascal the 128 character ASCII set is used. (Extended to 256 characters to include 64
graphics).

In all implementations of Pascal the digits ‘0" to ‘9’ are guaranteed to be ordered and
continuous, and the letters ‘A’ to ‘Z' are ordered (but not necessarily contiguous).

The standard functions ORD and CHR converts from character to integer and back.

2

goqogoaqooooaaoooaanaiill

For example, in OXFORD Pascal:

ord (A") =65

chr(36) =%

Also, succ(x) gives the next character after x, ad pred(x) gives the character before x,
for example:

succ(3)="4'

pred('1)="0'

Note that in OXFORD Pascal succ (chr(255)) and pred (chr (0)) are undefined, and chr
(x) with x outside the range 0..255 is not allowed.

3.2.4 User-defined (enumerated) types

These are usually defined by means of a type declaration (section 3.2) for example:
type day = (monday, tuesday, wednesday, thursday, friday, saturday, sunday);
colour= (RED, GREEN, BLUE);

The data type “day” then has seven ordered values represented by the identifiers
MONDAY, TUESDAY, etc.

The type “colour” has three values. The function ORD, SUCC and PRED may be used
on these types (see the previous section). For example.

succ (wednesday) = thursday
pred (green) = red

ord (monday) =0

ord (green) = |

ord (sunday) =6

3.2.5 Subrange types

The user may define subranges over any scalar type except REAL.
Examples:

type year= 1970..1990;
weekday = monday..friday;

These types have the same properties as their parent types, but often occupy less
storage space,and values are checked at runtime to see that they fall in the required
range. They also act as a convenient means of documentation.

82

3.2.6 Boolean

Boolean values in Pascal are represented by the standard identifiers TRUE and
FALSE. In fact the data type Boolean may be thought of as resulting from the
declaration:

type boolean = (false, true)

so true>false. The Boolean operators defined in Pascal are:

and — logical “and” operation
or — logical “or” operation
not — (unary operator) logical negation.

The relational operators

< less than
> greater than
= equal to
<= less than
or equal to
>= greater than or equal to
<> not equal to

may be used with any scalar data type (integer, real, Boolean, char, user-defined),
and give a Boolean result. They may also be used to compatre strings (section 5.)

3.2.7 Operator precedence

The relational operators

<> <=>== <> in(see section 5)
have lowest precedence, followed by
+—or

then

/ div mod and

and finally the unary operator

not

Evaluation is otherwise left to right, and can be changed by using parentheses.
Particular care should be taken with expressions like :

(x>3) and (y=2)

This would be illegal if the parentheses were ommitted.

852

paoaaaoaoooEoaaaaanaaodidi

3.2.8 Summary of arithmetic and conversion functions

Function
abs (x)

abs (x)
sar (x)

sqr ()
sart (x)
In (x)
exp (%)
sin (x)
cos (x)

arctan (x)
trunc (x)
round (x)

chr (x)
odd (x)
ord (%)
pred (x)

succ (x)

(* can't be real)

Parameter
integer

real
integer

real

real or integer
real or integer
real or integer
real or integer
real or integer

real or integer

real

real

integer
integer
scalar *

scalar ¥

scealan®

Result
integer

real
integer

real
real
real
real
real
real

real

integer

integer

char
Boolean
integer

scalar

scalar

Meaning
absolute value

absolute value
square

square

square root (x>=0)
natural logarithm (x>0)
e raised to the xth power
sine (x in radians)

cosine (x in radians)

arctangent (0 to PI
radians)

convert real to integer by
truncation towards zero

converts real to integer by
rounding

convert ASCII value
TRUE if x is odd
position within a data type

preceding value in a data
type

next value in a data type

The function “x to the power of y* may be calculated (for x > 0) using the expression :

exp (v* In (%))

82

3.3. PASCAL DECLARATIONS AND STATEMENTS

3.3.1 Pascal Programs
A Pascal program takes the form:

program header

label declaration

constant declaration part

type declaration part

variable declaration part

function and procedure declarations
BEGIN

executable statements

END.

The declarations are all optional. Label declarations are discussed in Il 3.12,
functions and procedures in 1 6.

The program header is optional in OXFORD Pascal. If it is included it consists of the
keyword PROGRAM followed by a name (which can be any valid identifier) followed
by a list of identifiers in brackets, for example:

program joe (input, output);

“Input” and “"Output” are external files used by the program “joe”. The header is
terminated by a semicolon.

The final full stop after the program “end” is always required.

3.3.1.1 Constant declarations

These are used to assign values to identifiers which will not change throughout the
program. They facilitate modifications to the program and provide a means of
documentation.

The keyword “const” is followed by one or more declarations of the form
identifier= value;

“value” may be a signed or unsigned integer, real, a Boolean, character, string, a
member of an enumerated type or a previously defined constant identifier.

Examples:

const message = 'hithere!’
ch = '$,
PI =1 334
MINUSPI = -PI

38

l

gaaggaoaooanuoanaanaandl

3.3.2 Type declarations

These are used to make an identifier synonymous with a given data type. The keyword
"type” is followed by one or more declarations:

identifier = datatype;

Examples:

type suit = (SPADES, HEARTS, DIAMONDS, CLUBS);
int = Integer,
byte =110..255;

3.3.3 Variable declarations

In Pascal all variables must be declared explicitly. This is sometimes annoying but
makes the programmer's intention clearer and helps the compiler to detect errors.

The word “var” is followed by one or more declarations:
identifier list: datatype;
Examples:

type day = (monday, tuesday, wednesday, thursday, friday);
var x,y:real;

i: integer,

switch : Boolean;

today, tomorrow, payday:day;

favouritecolour : (BLUE, RED, GREEN, PINK):

date : 1970..1990;

The variables denoted by these identifiers can then take any of the allowed values for
the corresponding data type.

3.3.4 Executable statements

The executable part of a Pascal program enclosed by the keywords BEGIN and END,
consists of zero or more sequentially executed statements separated by semicolons.
Redundant semicolons are always accepted and generate no code. There is no need
for any correspondence between the logical structure of statements and their physical
layout. Well formatted programs with one statement per line are easier to read,
however.

3.3.5 Assignment statements
The form of this statement is:
variable := expression

where the left and right hand sides must have compatible data types. This means that
they must arise from the same type identifier, or be declared as variables in the same
declaration. Exceptions are if the variable type is a subrange of the expression type, or
they are sets with compatible base types, or if the left hand side is real and the right
handside is integer.

e2

The value of the variable is set to the value of the expression, and future references to
the variable will yield this value.

Examples:

x = 3/sqrt(36)
y=xt4
y:=y-2

x and y are
"real” variables.
x issetto 0.5
yissetto 4.5
yissetto 2.5

3.3.6 Compound statements
The construction:

BEGIN
Sequence of statements separated by semicolons
END

behaves as a single statement, which when executed causes the execution of all the
enclosed statements in sequence.

3.3.7 "I statements

The statement “IF Boolean expression THEN statement 1” causes statement 1 to be
executed only if the expression is TRUE. Altematively, “IF Boolean expression THEN
statement 1 ELSE statement 2” causes statement 2 to be executed instead if the
expression is FALSE.

IMPORTANT - no semicolon may be placed before the ELSE.

Statement 1 and statement 2 can be any Pascal statement, including another [F
statement. For example: if x then if y then s] else s2 — is taken to mean:

if x then

begin

ity the sl else s2
end

3.3.8 “Repeat” statement
REPEAT

sequence of statements separated by semicolons
UNTIL Boolean expression

causes the sequence to be executed repeatedly (at least once) until the expression
evaluates to TRUE when it is checked at the end of a loop.

ggoaqooaoooaooooaniaanidd

3.3.9 “While"” statement
WHILE Boolean expression DO statement 1

Statement 1 is repeated zero or more times until the expression turns out to be FALSE.

3.3.10 “For" statement
FOR variable := el TO 2 DO statement 1

The variable can be any scalar type except real. el and e2 are expressions of the
same type as the variable. Statement 1 is executed exactly ord (e2) — (el) + 1 times
(zero times if e2<el). On successive loops the value of the variable is el, succ(el),
succ (succ(el)),..., €2

An alternative form is:

FOR variable := €2 DOWNTO el DO statement 1

Where statement 1 is executed with successively decreasing values of the variable.
Statement 1 should not try to alter the variable, as in:

fori=1to10doi:=i+ 1 (* WRONG *).

Structure members (section 5) can't be used as control variables in FOR loops.

Also, control variables must be local to the current block (section 6.4).

3.3.11 “"Case” statement

CASE expression OF
constant list : statement;
constant list : statement;

constant list : statement;

END

A redundant semicolon may be included before the END, as shown.

Each constant list consists of one or more constants (which must be the same datatype
as the case expression), separated by commas. The case expression must be a scalar
type (and can't be real). Each label in the case statement should be unique, and
indicates that the statement it prefixes is the one to be executed if the case expression
has that value. ifno case labels match the expression value when the case statement is
executed, a CASE ERROR occurs.

38

WARNING - Case statements with a wide spread of values should be avoided, for
example:

Casenof

l: statement 1;
44255: statement 2
end

This will generate a large jump table in memory with null entries for all the intermediate
values (2,3 etc.). Generally, case statements are an efficient way of choosing one of
many similar statements to execute.

3.3.12 “Goto" statement
Pascal statements may be prefixed by a label thus:
label : statement

The label is an unsigned integer which should differ from all other labels in the first 8
digits in OXFORD Pascal (4 digits in standard Pascal). Control can then be transterred
to this statement from another part of the program by means of the “goto” statements.

GOTO label
All labels must be declared before use (see below).

The effects of jumping into a structured statement (FOR, WHILE, REPEAT, IF, CASE,
WITH) or into a function or procedure is undefined.

The use of GOTO's is not recommendedif it can be avoided, since programs quickly
become unreadable and error detection becomes very difficult.

Jumping to an undefined (as against undeclared) label is signalled as a runtime error

in OXFORD Pascal.

GOTO's can be used to exit from nested functions and procedures.

Label declaration
This takes the form:
LABEL list of labels;

The labels are separated by commas.

S

geooqaqaoogoooaoaonulnlld

3.4 INPUT AND OUTPUT OF TEXT

A file is a Pascal structured variable which (unlike an array) has no fixed size. Its
elements are normally accessed sequentially and either reside on a disc or are
associated with some physical I/O device such as the keyboard or display.

In this part we look mainly at textfiles, which are essentially files of characters (Pascal
data type CHAR), but which give special treatment to the newline character. In
particular the standard texffiles INPUT and OUTPUT, which are usually the keyboard
and display, are discussed. Disc files are covered later in I11.8 and IIL.9.

3.4.1 Outputting to textfiles

A textfile is a variable declared as type TEXT. Associated with any Pascal file fis a
buffer variable f 1 which is used in transferring data to and from the file. The standard
procedure call:

write (f, ch)

is equivalent to:

f ™= ch; put (f)

writeln (f)

sends a newline character (ASCII carriage retum followed by a line feed) to the file {.
page (9

sends a form-feed (or clears the screen in the case of the display).

3.4.2 Inputting from textfiles

get ()

reads the next item from the file f into { 1.
read (1, ch)

for a character variable ch is equivalent to:
ch:={M; get(ch)

Ifthe result of a GET is a newline character (a carriage return — linefeeds are ignored in
textfiles), then f N appears to contain a space and the standard function EOLN({) is set
to TRUE. Otherwise EOLN (f) is FALSE.

Ifthe end of the file has been reached then gef(f) will cause the standard function
EOEF(f) to become true, and f 1 will be undefined. Doing a get(f) while EOF({) is TRUE

will cause an error.
readln(f)
skips to the start of the next line. It means:

begin while not eoln(f) do get (f); get(f) end

3.4

3.4.3 Reading other data types from textfiles
Syntax
read (f, variable list)

each variable in the list can be of type CHAR, INTEGER or REAL.

char : reads one character into the variable, as above.
integer : reads one character into the variable, as above.
integer : reads any valid (signed or unsigned) integer constant into the variable,

skipping leading blanks and newlines.

real : reads any valid integer or real constant into the variable, skipping leading
blanks and newlines.

f A is set in each case to the next character after the data read.

3.4.4 Writing other data types to textfiles
Syntax:
write (f, expression list).

each expression can be of atype CHAR, REAL, BOOLEAN, INTEGER or a string, and
may be qualified by a field width

expression : w

where w is a non-negative integer expression giving the total number of characters to
write to the file.

Character or string: Write sufficient spaces to give a total of w characters,

then write the character or string. If w is too small then
the string is truncated on the right. Default w= the size
of the string.

Boolean: As with string, but one of TRUE' or 'FALSE' is written.
Default w=6.

Integer: Write sufficient spaces first to give a total of w
characters. Then write the number without leading
zeros, preceded by a minus sign if it is negative. If w is
too small print out the entire number with no spaces.
Default w=7.

3.4

A IR R R R R R R R R R RRRRR

Real: There are two formats: : 5
(i) Floating point — write a sign character (space or =)
followed by a digit, followed by a decimal point,
followed by enough digits to give a total of w
characters, followed by a4-character exponent. If wis
too small, at least one digit is still printed after the
decimal point. Default w=12.

(i) Fixed point— the number of decimal places must
be specified:

expression: w:d

Enough spaces are first printed to give a total of w
characters, followed by a minus sign if negative,
followed by a decimal point and d fractional digits,

with roundings if necessary. If w is too small, no spaces
are printed but the entire number is still output.

3.4.5 Abbreviations

write (f,...) is short for write ({,...); writeln (f)
read (f,...) is short forread (f,...);readln (f)
write (...) is short for write (output,...)
read (...) is short for read (input,...)
writeln is short for writeln (output)

readln is short for readln (input)

eoln is short for eoln (input)

eof is short for eof (input)

page is short for page (output)

3.4.6 Manipulating files

There is no problem in passing files as variable parameters. In OXFORD Pascal (but
not in standard Pascal) assignment and passing as value parameters is also allowed.
For example:

var sourcefile : text

begin
sourcetile ;= input;

read (sourcetile, x); (* reads from keyboard *)

3.4

3.5 STRUCTURED DATA TYPES

3.5.1 Arrays
The syntax of array types is:
ARRAY (indextype) OF element type.

Where “indextype” can be any scalar or subrange type except real. If indextype has
values ranging from m to n, say, then this defines an array of ord (n)-ord(m)+1 values of
type “elementtype”, which are referenced using the subscripts [m], [succ(m)]....,[n].

Altematively arrays can be accessed as a whole:
Examples:
var x,z : array [1..64] of integer;

y : array [0..3] of array [4..21] of redl;

begin

x[1] =0;
5=l EE2:
v [3] [1] = 3.345;

z:=%; (* Transter whole array *)

“element type” may be any Pascal data type. N-dimensional arrays may be
abbreviated as follows:

anay [t1,£2,...,tn] of sometype

which is equivalent to:

array [t1] of array [t2] of ... array [tn] of sometype

example:

var x: array [1..7,4..9, boolean] of char;

reference to n-dimensional arrays may also be abbreviated,

x[i,7 false] ="$’;

88

qoagaaoaoooooooononanng)

3.5.2 Sets
The syntax is:-
SET OF elementtype

where “elementtype” should be a scalar or subrange type, but not REAL. Sets are
constructed from a collection of values in square brackets, for example:

var x : set of 0..127,

y : set of (RED, GREEN,BLUE);
begin

x:= [1,sq1(2), 6..74];

y:= [BLUE, GREEN];

where 6..74 gives all the values between 6 and 74 inclusive. Set elements must have
ordinal values between O and 127 inclusive. If their base types are compatible, then
two sets are said to be compatible sets are:

E3

+ and -
=<><=>=

Intersection (highest precedence)
Union and difference
Equadlity, inequality and inclusion tests.

The IN operator tests membership of a set. The left hand side should be a scalar
compatible with the sets base type. IN has the same precedence as the relational
operators <>, = etc.

Examples:
Assuming

var x,y : set of (APPLES, PEARS, ORANGES, BANANAS, FIGS);
begin

x:=[APPLES, PEARS, BANANAS];

y:=[BANANAS, FIGS];

Then

x+y is [APPLES, PEARS, BANANAS, FIGS]
x—y is [APPLES, PEARS]

x*y is [BANANAS]

x=y,x<=y and x>=y are all false
x<>y is true

y <= [APPLES, FIGS, BANANAS)] is true
y<=y is true

y>=y is true

y=[BANANAS, FIGS] is true
BANANASIN y is true

ORANGES IN x+v is false

35

3.5.3 Records
The basic syntax is:

RECORD
identifier list : data type;
identifier list : data type;

identifier list : data type
END

An optional semicolon may be placed before the END. The fields may be accessed by
the field name preceded by a dot, for example:

var x,y:record

a,b:integer
creal

end;

begin
x.b:=-33;
x.c := 9E-20;
x.a:= x.b+2;

Entire records may also be assigned:

iz

Several different record definitions may be combined using the following syntax:

RECG@RD

any field common to all variants

CASE identifier:datatype OF
constant list : (field list);
constant list : (field list);

constant list : (field list)
END

Again there can be a redundant semicolon before the END. The variant “field lists”
may themselves contain nested variants, for example:

type date = record
year : integer;
month : JAN,FEB,MAR,APR,MAY,JUN,JLY,AUG,SEP,OCT NOV,DEC);
elesys LSl

end;

35

Coaaaooaooooooooaaoodadld

person = record
name: packed array [1..30] of char;
birthday : date;
case status: (EMPLOYED, UNEMPLOYED,RETIRED, STUDENT) of
UNEMPLOYED: (registered : date);
EMPLOYED : (case selfemployed : boolean of
true : (numberofemployees:integer);
false : (employer: packed array [1..30] of char;
dateemployed : date))
end;
var his:person;
begin
his.name := ‘Harry Johnson’;
his.birthday.year := 1938;
his.birthday.month := DEC:
his.birthday.day := 12;
his.status := EMPLOYED:
his.employer :=

etc.
WITH statements have the effect of declaring the fields of a record as local
variables for that statement. For example:

with his birthday do
begin
month:=DEC:

year := 1938;
deayi="12;
end;

The record cannot however be referenced as a whole from inside the WITH statement.
WITH 1, 12, ..., m DO statement
is equivalent to:

WITH 11 DO WITH r2 DO ... WITH m DO statement

3.5.4 Packed Structures

Records, amrays, sets and files may be preceded by the word “packed”. This is a
command to the compiler to optimise storage space for that structure, possibly at the
expense of speed in accessing individual components of the structure. In OXFORD
Pascal, “packed” has little effect on speed, but may cut storage by half in arrays of
enumerated values, characters and subranges (0..255 and less). The disadvantage is
that packed array elements can't be used as VAR parameters to procedures or
functions (but whole packed arrays can).

Packed arrays [1..n] of type CHAR are special in Pascal because they are considered
to be string variables of length n.

35

Examples:

var x,y :packed array [1..4] of char;
z: packed amray [1..10] of char;

begin
% := "how/,
y = 'when;
z:= 'Hithere!’;

y=x is false, y>x, y>=x and y<>x are true.
y>'what' is true, x<'why' is true.

But note:

x and z are incompatible (different lengths)
x and 'hello’ are incompatible.
z and 'who' are incompatible.

3.5.5 Pack and Unpack (not available in resident mode)

Access to individual components of packed arrays may be costly, and the

programmer is advised to pack or unpack a packed array in a single operation.

If U and P are amray variables, for example:

type t =(some data type);
var U : array [m..n] of t;
P:packed array [a..b] of t;

where (n-m) >= (b—a) then:
pack (U,i,P)

is equivalent to:

fori=atob do P [j] :=U [j-a+i]
and

unpack (P,U,i)

is equivalent to:

forj:= atob do U [j-ati] := P[j]

8o

LGuQuououEuononIRInRRny

3.6 FUNCTIONS AND PROCEDURES

3.6.1 Function and procedure definitions

The syntax for each definition is the same as the syntax for a program, except that a
function or procedure header is used instead of a program header, and also a
semicolon appears at the end instead of a full stop:

procedure or function header

label declarations

const definitions

type definitions

variable declarations

procedure and function definitions

BEGIN

executable code for this procedure or function
END;

Any number of procedures or functions may be defined in a program. The definitions
should occur between the variable declarations and the main “BEGIN” of the
program.

A procedure header has the form:

PROCEDURE procedurename;

or

PROCEDURE procedurename (formal parameter list);
A function header has the form:

FUNCTION functionname : datatype;

or

FUNCTION functionname (formal parameter list) : data type;

3.6.2 Procedure and function calls

Procedure calls are statements having the form:
procedurename

or

procedurename (parameters)

The effect is to execute any code between the BEGIN and the END of the procedure

f}l}eﬁnitﬁ)n, and then retumn to continue the program normailly, from the statement after
e call

Function calls are expressions which have the data type specified in the function
heod.e.r. To evaluate the function, any code between the BEGIN and the END of the
defm.mon Is executed, and the value returned is the last value that was assigned to the
function name. The value returned by a function must be a scalar or a pointer.

36

P

Examples:

procedure x;
begin
writeln (‘'xxxxx')
end;
begin x;
writeln ('yyyyy);
X
end.

Is equivalent to
begin
writeln ('xxxxx’);

writeln ('yyyyy);
writeln (‘'xxxxx’)
end.

The following example will set i to the value of 4:

vari: integer;
function xyz : integer;

begin
Xyz:=2;
xyz:=4
end;
begin
i:=xyz
end.

3.6.3 Parameters

The usefulness of procedure and function calls can be extended by passing
parameters. [f these are used they must comrespond in number, position and type with
the formal (dummy) parameters in the definition.

The formal parameter list contains one or more patrts separated by semicolons. Each
part has one of the forms:

identifier list : datatype

VAR identifier list : datatype
FUNCTION identifier list : datatype
PROCEDURE identifier list

These comespond to four different classes of parameters, identifiers, variables,
FUNCTION and PROCEDURE parameters which are substituted with expression

values, variables, function and procedure names respectively when the function or
procedure is called.

8I6

AAEE A0 00 000000000000D0DD3

Examples:

const SIZE = 20; .

type vec = amay [1..SIZE] of integer,
var v:vec ; i:integer,

function tan (x:real):real;

begin
tan = sin (x)/cos(x)
end;
procedure zero (var a:vec);
begin .
fori:==1toSIZEdoali]:=0
end; :
function square (x:integer):integer,
begin
square := sq1(x)
end;

func’tion sigma (function finteger; n,m :integer):integer;
var sum, i:integer;
begin
sum:=0;
for ;= n to m do sum:=sum-+{(i);
sigma:=sum,;
end;

Given the above definitions

tan (0.5) would give the tangent of 0.5 radians
(sin (0.5)/cos(0.5))
zero (v) would set the array v to be all zeros.

Note that passing large arrays (and records) as VAR parameters is a good ideq,
because the computer does not then have to copy the array.

sigma (square, 1,20)
evaluates 1+4+9+16+...+400.

OXFORD Pascal (and many other Pascal systems) will not let you pass stomdcnd
function and procedure names as parameters, hence the need for the function
“square”.

86

WARNING - Functions and procedures passed as parameters can themselves only
have value parameters, and these are not checked.

Se

procedure X(a:real);
begin

end;
procedure y(procedure b);
begin

begin
Y (%)

will lead to disaster because x expects areal and gets an integer parameter (4).

3.6.4 Local declarations

Any variables, constants, labels, types, procedures and functions declared within a
procedure or function are local to that procedure or function and cannot be referred to
from outside it.

“Global” identifiers defined outside a function or procedure may also be referenced
inside it, unless they have been redefined by local definitions.

Examples:

program example;
var i:integer; (* may be referenced by main prog, P1 and P2 #)
J:real; (* may be referenced by main prog and P3 #)
k:boolean; (* may be referenced anywhere ¥)
procedure P1;
var jinteger, (¥ may be referenced by P1 and P2 only *)
procedure P2;
var m:char; (* may be referenced by P2 only *)
begin

énd;
begin
end; (* ofP] #)
procedure P3;
consti=49; (* may be referenced by P3 only #)

Pl and P3 may be called from anywhere.
P2 may be called from P1 or P2.

36

LSS TR R AT R IRRELEE

3.6.5 Recusion and forward references

Functions and procedures can call themselves recursively:

function factorial (x : integer):integer,
begin

if x==0 then factorial :=1

else factorial := factorial (x—1)*x

end;
factorial (4) gives 4*3%2%]1 = 24

Sometimes it is helpful for a procedure to be able to call another procedgre before the
procedure being called is defined. The undefined procedur”e must p”rewously hc(ve1
been declared with name and parameter list, together w1ch forward” — see example.
The parameter list is not required on subsequent declaration of the procedure.

Example:

procedure x(parameters for x); forward;
procedure y(parameters for y);
begin
(Ecallshed)
end;
procedure x;
begin
Ecallsiy)
end;

x and y call one another (they are “mutually recursive”).

3.7 DYNAMIC STORAGE AND POINTERS

3.7.1 Pointers

Variables of a pointer type take as values the memory address of other variables. This
can be used in Pascal to create variables as required while the program is running,
since the compiler does not need to know the memory address in advance if it can be
stores in a pointer. The syntax of a pointer type is:

type pointed to

where “type pointed to” is an identifier which is the name of some data type (which
could be declared later, allowing recursive definitions such as linked lists and trees).

Examples:

type treepointer = tree;
tree = record
leftbranch, rightbranch : treepointer;
data: sometype;

end;
var oak : tree;
p : integer;

The only way of giving a pointer a value in standard Pascal is to assign it the value “nil”
(which is guranteed to point to no variable) or to use the procedure “NEW".

In OXFORD Pascal, “nil” is the address 0000.

Pointers can, once assigned a value, be tested for quality (<> and =).

3.7.2"New" and "dispose”

NEW dallocates a new variable from the available storage (if any) and stores a pointer
to it in the specified variable.

The variable created may then be referenced by the pointer variable followed by a.

DISPOSE destroys the variable pointed to by the specified pointer and makes the
storage available for other use. Of course you must be sure that the variable being
DISPOSED is never referenced again.

Examples:
var p: real;
begin
new (p);
p :=103.7;
write (p *p *p);
dispose (p)
end.

Would print the cube of 103.7 and then destroy the space used to store it. P means the
variable whose address is in p.

S

CaCqaaaaoauuuoanaaanandl

EReIERTILES

(sections 8.1 to 8.4 do not apply to resident mode)

3.8.1 Declarations
Disk files are declared as Pascal variables of type “file of X where X is the base type of
the file, and can be any structures or unstructured data type. For example:

type patient = record
name : packed array [1..20] of char,
wordnumber : integer
end;
var f: file of integer;
g, h:file of patient;

Every file f declared in Pascal has an associated buffer variable {* whose type is the
base type of the file. Disk files can also be texftliles, for example:

var fl, 2 :text; (see section4.1)

3.8.2 Sequential writing

Before they can be read or written, disk files must be opened using one of the standard
procedures RESET and REWRITE. Up to 5 sequential disk files may be open at any

time.
rewrite (f)

creates an empty file which is then open for sequential writing. The end-of-file eof(f) will
retumn TRUE in this mode. The call put(f) writes the data in the file bufter (the variable
f1) to the file.

The sequence:

begin {1 := expr; put (f) end
may be abbreviated to:

write (f,expr)

IMPORTANT NOTE - in OXFORD Pascal, assignments should not be made to the
buffer variable { * before a resef(f) or rewrite (f) has been done.

3.8.3 Sequential reading
The procedure call:
reset (f)

opens the file f for sequential reading. f must previously have been written by a
REWRITE command, otherwise the error message FILE DOES NOT EXIST will be
printed. The first record in the file will be placed in the variable {1 . (Oriffis empty, {
will be undefined and eof(f) will be true).

88

g

Successive records can be read into the butfer variable {1 by the procedure call:

get (9
read (I,%) is equivalent to x:={ T ;get (f)

The function eof(f) returns TRUE when there are no more records in the file. Attempt to
read past an end-of-file will cause an error.

As an example the following program writes a file containing the numbers 1 to 10, and
then reads them back displaying them on the 64 screen:

var i: integer;
testfile : file of integer;
begin
rewrite (testfile);
fori:= 1 to 10 do write (testfile , i);
reset (testfile);
while not eof (testfile) do
begin
read (testtile, i);
writeln (1)
end
end.

3.8.4 External files

The files described above are “intemal” files, in other words temporary files which are
normally deleted when the program (or procedure or function) in which they are
defined finishes. Pemmanent diskette files may be created and/or accessed by givinga
filename parameter to RESET or REWRITE. (The parameter may be either a string
constant or a string variable). This is an extension to standard Pascal allowing
specification of filenames, which can be useful in interactive programs.

Note that the filename cannot contain any imbedded spaces. If the filename is a string
variable, it should be teminated by at least one space.

Examples:

var fname : packed array [1..15] of char;
f g: file of sometype;
begin
reset (f,'datafile’)
fname = '0:TEMP,HEX ' (* drive must be specified ¥)
rewrite (g,fname);

3.8.5 Reading and writing from other devices

Any device on the [EEE bus may be accessed by using RESET or REWRITE with the
syntax:

reset (f, devicenumber,secondaryaddress)
orreset (§, devicenumber,secondaryaddress, filename)

where device number and secondary address are integer expressions. This syntax
can also be used in resident mode.

38

var printer:text;
begin
rewrite (printer,4,0);
writeln (printer,'Message with UPPER case!’);

The rewrite command may be used to send commands to the floppy disk unit, for
example:

const DISK = 8; (¥ disk unit physical device # *)
CC = 15; (* command channel secondary address *)
var f:text
begin
rewrite (f, disk, cc, '11°); (¥ Initialize drive O *)
rewrite (1, disk, cc,' RO:NEWNAME=OLDNAME)
(* Rename a file *)
evaitelimcisktccR @@ @RY=ORIEEI @ RIEED):
(* Copy disk files *)

3.8.6 CLOSE command

This command is an extension to standard Pascal. It may be used to explicitly close a
file (without resetting or rewriting) if required. The syntax is:

close (f)

Disk textfile example

The following example program prompts the user for a idsk file name, and then outputs
an upper-and-lower-case textlile to the 64 printer.

program printfile;
var fname : packed array [1..80] of char;
chcher:
f, printer : text;
begin
writeln;
writeln (‘Filename ?);
read (1, iname);
reset (I, fname);
rewrite (printer, 4,0);
while not eof (f) do
begin
while not eoln (f) do
begin
read (f, ch);
write (printer, ch);
end;
readln (f);
writeln (printer);
end
end.

(ooooooaaoauuuEioiadadda

S

3.9 EXTENSIONS TO STANDARD PASCAL

The features described in this section are specific to OXFORD Pascal and might not
be implemented on other systems.

3.9.1 Hexadecimal constants

These are introduced by the symbol § (for integer constants) or a backlash
(for character constants).

Their main application is probably in machine language and I/O interfacing
Examples:

const portA=$e84f;

linefeed= ¢
var chardata:char;
begin

-chardat(]::hnefeed; (* linefeed is a constant of type CHAR #)
poke (portA, $3);

(writes the data 3f hex to an imaginary VIA port “A” mapped at hex memory address
EB4F)

3.9.2 Memory VDU and port access

The standard functions/procedures PEEK, POKE, ORIGIN, GETKEY and VDU are
provided for this purpose.

peek (x:integer):0..255

is a function which gives the contents of the physical memory location x, while the
procedure:

poke (x:integer; y:0..255)

is used to change the contents of location x to the byte y. Poke should, of course, be
used with great care to avoid corrupting your program.

origin(x : sometype;y :integer)

sets the pointer x to point at the physical memory location y. x can be any pointer type.
This should be used with care (see section 10)

The procedure VDU (x,y :integer; ¢ :chan) stores the character ¢ in the VDU memory
row x, columny.

Finally, the function
getkey:char

retumms a character read directly from the keyboard port. Chr(0) is retumed if no
character is ready.

39

GaddaoogaogooooouonDODdd

Examples:

Vel 0255

begin poke($014c, $33); stores the byte 33 (hex) at address 14c¢ (hex)

x:= peek(47); sets x to the contents of decimal memory address 47
page; clears the VDU screen

VDU(0,3,?); writes a question mark to the VDU row O, column 3

while getkey=chr(0)do; waits for someone to press a key

3.9.3 Added Commands for Oxford Pascal V1.0
SOUND COMMANDS.

There are three sound commands available as pre-declared procedures in Oxford
Pascal. These allow use of all three voices and envelope generators.

PROCEDURE NAME ENVEL (V,A,D,S,R);

PARAMETER TRIE RANGE
V is the voice number. Integer 1-3
A is the attack rate. Integer 0-15
D is the decay rate. Integer O=15
S is the sustain rate. Integer 0-15
R is the release rate. Integer 0-15
PROCEDURE NAME VOICE (V, F, W, D);

PARAMETER TRE RANGE
V is the voice number. Integer 1-3
F is the frequency. Integer 0-65535
W is the wave type. Integer 0-3
D is the duration. Integer 0-65535
N.B.

The wave types are triangle, sawtooth, pulse, noise. The pulse length of the pulse
signal has been preset to an equal mark space ratio.

The frequency s as defined in the COMMODORE 64 Handbook and is determined by
the formula Fout = (F * 0.059604645) Hz

The duration is a constant used in an intemal delay loop and denotes the delay from
the signal reaching its sustain level till the start of the release cycle. Redlistic effects can
be obtained by making the duration a factor of the sustain level multiplied by some
constant.

The ENVEL command must preceed the VOICE command since the latter acts as the
trigger for the voice.

PROCEDURE NAME VOLUME (L):
PARAMETER TRE RANGE
L is the volume level. Integer 0-15

The volume command controls the master volume of the SID chip in the 64. It can be
set to any level at any time.

Sio

GRAPHICS COMMANDS

Oxford Pascal provides various pre-declared procedures and functions for use of the
graphics on the 64. These can be split into commands for normal screen use, and hi-
resolution commands.

Normal screen commands.

Set the border colour.

BORDER(C);

Set the screen colour.

SCREEN(C);

Set the colour for the text to print in.

PEN(C);

C is an integer in the range O — 15 and determines the colour as defined in the
COMMODORE 64 HANDBOOX.
Hi-Resolution commands.

Set the background colour to plot on.
PAPER(C);

Set the colour to plot in.

INK(C);

Hi-Resolution screen switch. (O=COFF / 1=0ON).
HIRES(C);

Examine a point. (0= OFF / 1 = ON)
P:=EXAMINE(X,Y);

Multi-purpose hi-resolution command.
BE@H(EEI R

All parameters are integers.

Il
ISR COMINC R N)

clear background to paper colour.

clear all points on hi-resolution screen.
plot a line from X,Y to X1,Y1
clear a line from X, Y to X1,Y1

fill an area around point X, Y till nearest boundaries

bl B e R
[

clear an area around point X, Y till nearest boundaries
To plot or clear a point make X1,Y1 = X,Y

Create a Text window on Hi-Resolution screen starting at top of screen and
terminating at line U. WINDOW (U);

39

(QQuoouoooonaooononnnodd

3.9.4 Hexadecimal input and output

The procedure WRHEX and WRHEX2, and the function RDHEX are provided.

wrhex (f:text; x:integer)

writes x as four hex. digits on the texttile {.

wrhex2 (f:text; x:0..255)

writes the byte x as two hex. digits.

Examples:

rewrite (printer,4,0);

wrhex (printer, —1); wrhex2 (output, 3)

prints FFFF on the printer and 03 on the 64 screen.
The tunction,

rdhex (f:text):integer

reads a 16 bit value from the file 1, skipping any leading blanks and

discarding all but the last four digits read.

23]

3.9.5 Bit manipulation

ANDB, ORB,XORB,NOTB,SHL, and SHR are functions operating on integers but

treated as 16 bitlogical data. The first four do bitwise AND, inclusive OR, exclusive OR
and 1's complement.

SHL(x,y) shifts x left by y bits(zeros are shifted in)
SHR(x,y) shifts x rights by y bits
SHL(x,~y) is equivalent to SHR(X,y)

examples:

andb ($£0, $00£)=$0010
orb ($1f00,$000f) = $£{0f
xorb(${{00,$0£0) = $f0f0
notb($0f0) = $0f0f
shl(4,4) = $40

shl(4,~1) = $4000
shi(4,0) = shr(4,0)=4

shr ($4444 4) = $444

3.9.6 Catching I/O errors

Occasionally it is necessary for a program to protect itself against unexpected
termination due to invalid input.
The procedure call:

iotrap(false)

tumns off PASCAL emror messages for real and integer read operations and disk I[/O:
iotrap(true)

tums checking back on again. After each integer or floating point or hex read
operation the function IOERROR may be used giving an integer error number:

ioerror= O-No error
2-Integer read eror
10-Floating point read error
etc. see (section I1.8 for a complete list of I/O runtime erors).

3.9.7. Keyboard interrupts
The calls:

restore(true)
restore(false)

enable and disable the restore key respectively.

The default is restore (true).

3<

YRR R R R R R R R R R R ERE.

3.9.8. Random Number Generator

i 0 and 255. A pseudo-
i dom :0..255 gives a random no. between d
T;nedfgrrllchsger;?ing sequence is used but this is initialised by timing all keyboard
r g
inputs and is also “kicked” frequently by the PASCAL interpreter.

The construction
random+(random mod 128)*256
generates a random no. between O and MAXINT, while

random mod—+1

generates an (almost) random no. in the range 1..n f is not too large.

3.9.9. Underscore i
The character’_’ (CBM Key and @ Key) is allowed as a letter in identifiers giving
improved readability.

3.9.10 The 64 internal clock
The clock may be examined by using the three functions :

hours : integer
minutes : integer
seconds : integer

and may be set using the procedure settime (h,m,s : integer).
Example:

settime (12,47,00);

Sets the clock to 47 minutes past midday and

writeln (hours, ', minutes, "', seconds);

would print:

12: 4 (@

3.9.11 Input of String Variables

String variables (ie packed arrays [1..n] of char) may be read from textﬁles in a similar
manner to characters, integers and reals. Any leading spaces or newlmes are Ihrst
skipped, then an entire line of characters is read from the file iqtq the string vcmcxble. It
the string is too long, it is truncated on the right, if it is too short it is padded out with
spaces.

A major application is for inputting file names from the console.

39

3.9.12 Program chaining (disk mode only)
The OXFORD Pascal command :

chain (filename)

stops execution of the current program and invokes the program named. The value of
GLOBAL variables will be preserved only if declarations are identical in the old and
new programs. All files are closed.

The filename can be either a string or a string variable. (If a string variable, atleast one
space must be used as terminator).

When used under the EX command, a”.obj” extension is implied.
Example:
file “progl” (onject code in “progl.obj"):

begin
writeln (‘First program’);
chain (‘Prog2’)
end.
file "prog2” (object code in “prog2.obj”):

begin
writeln ('Second program);
chain (‘Progl’)

end.

The command
ex progl
would cause the following to be printed:

First program
Second program
First program
Second program

until the stop key is pressed.

Program chaining is a useful technique for splitting up large programs, or for menu-
driven applications.

3¢

RQReQaQaauogooiniaaanddld

3.10 OXFORD PASCAL INTERFACE GUIDE

The purpose of this section is to provide all the necessary information to write 6502
machine language subroutines for OXFORD Pascal programs.

3.10.1 Assembly language format

Assembly language routines are declared as Pascal fgnctions or procedures but the
body is replaced by the word “extem” followed by an integer constant (the routine
address). Any parameters are passed on the stack and should be removed by the :
assembly language routine. The routine should also push.a retum value on the stgck it
it is declared as a function. The best way to describe this is by example, so here is a
simple function to add two integers:

program test;

function addxy (x,y:integer):integer,
extern $C000;

begin
write (addxy(3,4))

end.

This should result in the output:
7

Provided that the assembly language routine is correctly located at memory address

CO00h:

sptr = $2A ; Pascal stack ptr

= $C000

addxy cle
Idy #0
Ida (sptr),y : low byte y
Idy #2 ; low byte x
adc (sptr),y
sta (sptr),y
dey
lda (sptr),y :hibyte y
Idy #3
adc (sptr),y
sta (sptr);y
cle :
lda sptr : pop Y, leave result
adc #2
sta sptr
bce addrs
inc sptrt+1

addrts rts

; low byte result

; hi byte x
:hi byte result

Note: the top-of-memory pointer at locations $37-38 should first be set to $C000 or
below to prevent Pascal from overwriting hese locations.

810

!

3.10.2 Storage formats

All scalar and subrange types (except REAL), and pointersa are passed as 16-bit
words in the usual low-high format.

Reals are passed as 6 bytes; in 64 BASIC format.

loc n+5: unused

loc n+4: LS mantissa
o NS

locini=2: ¢

loc n+1: MS mantissa
locn exponent

Armrays are stored row-by-row (the opposite to FORTRAN), the lowest element has the
lowest address.

Armays are byte-packed if their elements are scalars in the range 0..255 (eqg. char), and
"packed” was specified. In this case the size is always rounded up to an even number
of bytes.

Records are stored with their fields in reverse order (first declared has highest address).
Sets are passed as a 1 28-bit map, a“one” indicates membership. Odd and even bytes
are reversed:

le@ mer 1l 57
locnt+14

loc nkd
locn

Itit 18 ... 101
9t 7 oo om0

Ioe 127 .. lstie 12(0)
Isiii L11S) oyt I

IMPORTANT - pointers always point to the location above the highest byte used by
the actual data. This also applies to VAR parameters, which are passed as addresses.

Example:

const VDUSIZE = 1000; (* 25 rows of 40 chars #)
type screen = packed array [1..VDUSIZE] of char;
var vduptr : screen;
begin

origin (vduptr, $0400 + VDUSIZE)

This declares an array based on the 64 vdu address 0400h.
vduptr [1] is the first vdu location.

3,10

CGOCUCCUUOREaauaaiadiaddl

ADDENDA

Directories

A disk directory may be obtained from the editor using the BASIC command:
LOAD “$0",8 for drive O
LOAD “$1”,8 for drive 1

Warming — this will overwrite any program text in memory.

LOCATE command

Be careful not to give the BASIC runnable file the same name as your source file (or any
other Pascal file on the same disk) as the Commodore will not overwrite a file with one of
a different type.

Compiling Errors

Error reporting in resident mode now produces the appropriate error message and not
an error number. Be prepared to look several lines back in your program for an error as it
may take this long to confirm an error. Also one error may produce a series of other errors
which will disappear when the first error is corrected.

High Resolution Graphics — extra notes

1. Screen boundaries; The x, y coordinates range from 0-255 and 0-200
respectively. The origin O, O is at the bottom left hand comer of the screen area.
Any point plotted out of range of these bounds will not be performed.

2 HIRES (1) defaults at power up to a complete screen equivalent to the command
WINDOW (25).

3. It is advised that a HIRES (0) statement is used before terminating a program
using hi-res graphics, unless it is desired to leave a window showing a particular
display. If a program exits or is stopped without this being done the command
KILL can be typed from the editor (blind, if necessary). KILL disables the hi-res
screen and removes the graphics wedge from the interrupt routine.

4. To enable a clean display in hi-res mode both functions O and 1 of the plot
command should be used.

51 Oxford Pascal uses standard bitmap mode for high resolution graphics and
therefore, whilst having access to 16 different colours, any character location on
the screen can only have one foreground (ink) and one background (paper)
colour. A character location consists of an 8*8 array of points. The effects of this
are noticeable when two lines of different colours are made to cross when part of
the line being crossed around the intersection changes to the colour of the line
crossing it.

Demonstration graphics program

(* this should produce a circle filled with pretty patterns®)
var z,x,y, l:integer,
a,b,c,r1,p: real;
begin
WINDOW(14);
R:=40;
7=z
c=1:
PAPER(10);
INK(3);
PLOT(0,0,0,0,0);
PLOT(1,0,0,0,0);
HIRES(1);
for 1:=0 to 359 do
begin
p=c*l;
=it @@S(p)
b:=r*SIN(p);
x=ROUND(a);
y:=ROUND(b);
INK(2);
z=z+1;
PLOT(2,y+150,x+150,x+150,y+150);
end;
end.

Demonstration sound program
(* this should make some interesting modulated sounds®)
var tiinteger;
begin
ENVERGF®I0TST5):
fort=15 down to O do
begin
VOICE(1,1000%t,1,7000);
VOICE(1,1000%,0,7000);
VOLUME(®Y);
end;
end.

Useful Memory Locations
HEXESNDHEE NSE
CO000 49152 Printer device number in editor mode — default 4

C001 49153 Printer type — default 1 0= Pet or64 type 1 = Ascii

CO002 49154 Line feed flag— default auto line feed 0 = auto line feed disabled 1 =
auto line feed

Limbic Systems U.K. Ltd.
Hensington Road, Woodstock, Oxford OX7 1]JR, England
Telephone (0993) 812700

Limbic Systems Inc.

560 San Antonio Road, Suite 202, Palo Alto, Ca.94306 U.S.A.

Telephone (415) 424-0168

